# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional from ...loaders import WanLoraLoaderMixin from ...pipelines.pipeline_utils import StableDiffusionMixin from ...utils import logging from ..modular_pipeline import ModularPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name class WanModularPipeline( ModularPipeline, StableDiffusionMixin, WanLoraLoaderMixin, ): """ A ModularPipeline for Wan. > [!WARNING] > This is an experimental feature and is likely to change in the future. """ default_blocks_name = "WanAutoBlocks" # override the default_blocks_name in base class, which is just return self.default_blocks_name def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]: if config_dict is not None and "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None: return "Wan22AutoBlocks" else: return "WanAutoBlocks" @property def default_height(self): return self.default_sample_height * self.vae_scale_factor_spatial @property def default_width(self): return self.default_sample_width * self.vae_scale_factor_spatial @property def default_num_frames(self): return (self.default_sample_num_frames - 1) * self.vae_scale_factor_temporal + 1 @property def default_sample_height(self): return 60 @property def default_sample_width(self): return 104 @property def default_sample_num_frames(self): return 21 @property def patch_size_spatial(self): patch_size_spatial = 2 if hasattr(self, "transformer") and self.transformer is not None: patch_size_spatial = self.transformer.config.patch_size[1] return patch_size_spatial @property def vae_scale_factor_spatial(self): vae_scale_factor = 8 if hasattr(self, "vae") and self.vae is not None: vae_scale_factor = 2 ** len(self.vae.temperal_downsample) return vae_scale_factor @property def vae_scale_factor_temporal(self): vae_scale_factor = 4 if hasattr(self, "vae") and self.vae is not None: vae_scale_factor = 2 ** sum(self.vae.temperal_downsample) return vae_scale_factor @property def num_channels_transformer(self): num_channels_transformer = 16 if hasattr(self, "transformer") and self.transformer is not None: num_channels_transformer = self.transformer.config.in_channels return num_channels_transformer @property def num_channels_latents(self): num_channels_latents = 16 if hasattr(self, "vae") and self.vae is not None: num_channels_latents = self.vae.config.z_dim return num_channels_latents @property def requires_unconditional_embeds(self): requires_unconditional_embeds = False if hasattr(self, "guider") and self.guider is not None: requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1 return requires_unconditional_embeds @property def num_train_timesteps(self): num_train_timesteps = 1000 if hasattr(self, "scheduler") and self.scheduler is not None: num_train_timesteps = self.scheduler.config.num_train_timesteps return num_train_timesteps