# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import torch import PIL from diffusers import ( DDIMPipeline, DDIMScheduler, DDPMPipeline, DDPMScheduler, KarrasVePipeline, KarrasVeScheduler, LDMPipeline, LDMTextToImagePipeline, LMSDiscreteScheduler, PNDMPipeline, PNDMScheduler, ScoreSdeVePipeline, ScoreSdeVeScheduler, StableDiffusionPipeline, UNet2DModel, ) from diffusers.pipeline_utils import DiffusionPipeline from diffusers.testing_utils import slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class PipelineTesterMixin(unittest.TestCase): def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) schedular = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline(model, schedular) ddpm.to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) new_ddpm.to(torch_device) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="numpy")["sample"] generator = generator.manual_seed(0) new_image = new_ddpm(generator=generator, output_type="numpy")["sample"] assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub(self): model_path = "google/ddpm-cifar10-32" scheduler = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm.to(torch_device) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm_from_hub.to(torch_device) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="numpy")["sample"] generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"] assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub_pass_model(self): model_path = "google/ddpm-cifar10-32" scheduler = DDPMScheduler(num_train_timesteps=10) # pass unet into DiffusionPipeline unet = UNet2DModel.from_pretrained(model_path) ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler) ddpm_from_hub_custom_model.to(torch_device) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) ddpm_from_hub.to(torch_device) generator = torch.manual_seed(0) image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy")["sample"] generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"] assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" @slow def test_output_format(self): model_path = "google/ddpm-cifar10-32" pipe = DDIMPipeline.from_pretrained(model_path) pipe.to(torch_device) generator = torch.manual_seed(0) images = pipe(generator=generator, output_type="numpy")["sample"] assert images.shape == (1, 32, 32, 3) assert isinstance(images, np.ndarray) images = pipe(generator=generator, output_type="pil")["sample"] assert isinstance(images, list) assert len(images) == 1 assert isinstance(images[0], PIL.Image.Image) # use PIL by default images = pipe(generator=generator)["sample"] assert isinstance(images, list) assert isinstance(images[0], PIL.Image.Image) @slow def test_ddpm_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_config(model_id) scheduler = scheduler.set_format("pt") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ddim_lsun(self): model_id = "google/ddpm-ema-bedroom-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler.from_config(model_id) ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ddim_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler(tensor_format="pt") ddim = DDIMPipeline(unet=unet, scheduler=scheduler) ddim.to(torch_device) generator = torch.manual_seed(0) image = ddim(generator=generator, eta=0.0, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_pndm_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = PNDMScheduler(tensor_format="pt") pndm = PNDMPipeline(unet=unet, scheduler=scheduler) pndm.to(torch_device) generator = torch.manual_seed(0) image = pndm(generator=generator, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ldm_text2img(self): ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256") ldm.to(torch_device) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[ "sample" ] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ldm_text2img_fast(self): ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256") ldm.to(torch_device) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU") def test_stable_diffusion(self): # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1").to(torch_device) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=torch_device).manual_seed(0) with torch.autocast("cuda"): output = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np" ) image = output["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU") def test_stable_diffusion_fast_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1").to(torch_device) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) sd_pipe.scheduler = scheduler prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=torch_device).manual_seed(0) with torch.autocast("cuda"): output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") image = output["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.8354, 0.83, 0.866, 0.838, 0.8315, 0.867, 0.836, 0.8584, 0.869]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow def test_score_sde_ve_pipeline(self): model_id = "google/ncsnpp-church-256" model = UNet2DModel.from_pretrained(model_id) scheduler = ScoreSdeVeScheduler.from_config(model_id) sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler) sde_ve.to(torch_device) torch.manual_seed(0) image = sde_ve(num_inference_steps=300, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ldm_uncond(self): ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") ldm.to(torch_device) generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=5, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow def test_ddpm_ddim_equality(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) ddpm_scheduler = DDPMScheduler(tensor_format="pt") ddim_scheduler = DDIMScheduler(tensor_format="pt") ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler) ddpm.to(torch_device) ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler) ddim.to(torch_device) generator = torch.manual_seed(0) ddpm_image = ddpm(generator=generator, output_type="numpy")["sample"] generator = torch.manual_seed(0) ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")["sample"] # the values aren't exactly equal, but the images look the same visually assert np.abs(ddpm_image - ddim_image).max() < 1e-1 @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation") def test_ddpm_ddim_equality_batched(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) ddpm_scheduler = DDPMScheduler(tensor_format="pt") ddim_scheduler = DDIMScheduler(tensor_format="pt") ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler) ddpm.to(torch_device) ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler) ddim.to(torch_device) generator = torch.manual_seed(0) ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy")["sample"] generator = torch.manual_seed(0) ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[ "sample" ] # the values aren't exactly equal, but the images look the same visually assert np.abs(ddpm_images - ddim_images).max() < 1e-1 @slow def test_karras_ve_pipeline(self): model_id = "google/ncsnpp-celebahq-256" model = UNet2DModel.from_pretrained(model_id) scheduler = KarrasVeScheduler(tensor_format="pt") pipe = KarrasVePipeline(unet=model, scheduler=scheduler) pipe.to(torch_device) generator = torch.manual_seed(0) image = pipe(num_inference_steps=20, generator=generator, output_type="numpy")["sample"] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU") def test_lms_stable_diffusion_pipeline(self): model_id = "CompVis/stable-diffusion-v1-1" pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device) scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True) pipe.scheduler = scheduler prompt = "a photograph of an astronaut riding a horse" generator = torch.Generator(device=torch_device).manual_seed(0) image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[ "sample" ] image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2