# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math import tempfile import unittest from atexit import register import numpy as np import torch from diffusers import UNetConditionalModel # noqa: F401 TODO(Patrick) - need to write tests with it from diffusers import ( AutoencoderKL, DDIMPipeline, DDIMScheduler, DDPMPipeline, DDPMScheduler, LatentDiffusionPipeline, LatentDiffusionUncondPipeline, PNDMPipeline, PNDMScheduler, ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetUnconditionalModel, VQModel, ) from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.pipeline_utils import DiffusionPipeline from diffusers.testing_utils import floats_tensor, slow, torch_device from diffusers.training_utils import EMAModel torch.backends.cuda.matmul.allow_tf32 = False class SampleObject(ConfigMixin): config_name = "config.json" @register_to_config def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], ): pass class ConfigTester(unittest.TestCase): def test_load_not_from_mixin(self): with self.assertRaises(ValueError): ConfigMixin.from_config("dummy_path") def test_register_to_config(self): obj = SampleObject() config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] # init ignore private arguments obj = SampleObject(_name_or_path="lalala") config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] # can override default obj = SampleObject(c=6) config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == 6 assert config["d"] == "for diffusion" assert config["e"] == [1, 3] # can use positional arguments. obj = SampleObject(1, c=6) config = obj.config assert config["a"] == 1 assert config["b"] == 5 assert config["c"] == 6 assert config["d"] == "for diffusion" assert config["e"] == [1, 3] def test_save_load(self): obj = SampleObject() config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) new_obj = SampleObject.from_config(tmpdirname) new_config = new_obj.config # unfreeze configs config = dict(config) new_config = dict(new_config) assert config.pop("c") == (2, 5) # instantiated as tuple assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json assert config == new_config class ModelTesterMixin: def test_from_pretrained_save_pretrained(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname) new_model.to(torch_device) with torch.no_grad(): image = model(**inputs_dict) if isinstance(image, dict): image = image["sample"] new_image = new_model(**inputs_dict) if isinstance(new_image, dict): new_image = new_image["sample"] max_diff = (image - new_image).abs().sum().item() self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") def test_determinism(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**inputs_dict) if isinstance(first, dict): first = first["sample"] second = model(**inputs_dict) if isinstance(second, dict): second = second["sample"] out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_forward_signature(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["sample", "timestep"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model_from_config(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() # test if the model can be loaded from the config # and has all the expected shape with tempfile.TemporaryDirectory() as tmpdirname: model.save_config(tmpdirname) new_model = self.model_class.from_config(tmpdirname) new_model.to(torch_device) new_model.eval() # check if all paramters shape are the same for param_name in model.state_dict().keys(): param_1 = model.state_dict()[param_name] param_2 = new_model.state_dict()[param_name] self.assertEqual(param_1.shape, param_2.shape) with torch.no_grad(): output_1 = model(**inputs_dict) if isinstance(output_1, dict): output_1 = output_1["sample"] output_2 = new_model(**inputs_dict) if isinstance(output_2, dict): output_2 = output_2["sample"] self.assertEqual(output_1.shape, output_2.shape) def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() def test_ema_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() ema_model = EMAModel(model, device=torch_device) output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() ema_model.step(model) class UnetModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetUnconditionalModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_channels": (32, 64), "down_blocks": ("UNetResDownBlock2D", "UNetResAttnDownBlock2D"), "up_blocks": ("UNetResAttnUpBlock2D", "UNetResUpBlock2D"), "num_head_channels": None, "out_channels": 3, "in_channels": 3, "num_res_blocks": 2, "image_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict # TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints # def test_output_pretrained(self): # model = UNetUnconditionalModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet") # model.eval() # # torch.manual_seed(0) # if torch.cuda.is_available(): # torch.cuda.manual_seed_all(0) # # noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size) # time_step = torch.tensor([10]) # # with torch.no_grad(): # output = model(noise, time_step)["sample"] # # output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off # expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053]) # fmt: on # self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetUnconditionalModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "image_size": 32, "in_channels": 4, "out_channels": 4, "num_res_blocks": 2, "block_channels": (32, 64), "num_head_channels": 32, "conv_resample": True, "down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"), "up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNetUnconditionalModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input)["sample"] assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size) time_step = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): output = model(noise, time_step)["sample"] output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) # TODO(Patrick) - Re-add this test after having cleaned up LDM # def test_output_pretrained_spatial_transformer(self): # model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial") # model.eval() # # torch.manual_seed(0) # if torch.cuda.is_available(): # torch.cuda.manual_seed_all(0) # # noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size) # context = torch.ones((1, 16, 64), dtype=torch.float32) # time_step = torch.tensor([10] * noise.shape[0]) # # with torch.no_grad(): # output = model(noise, time_step, context=context) # # output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off # expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890]) # fmt: on # # self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) # class NCSNppModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetUnconditionalModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_channels": [32, 64, 64, 64], "in_channels": 3, "num_res_blocks": 1, "out_channels": 3, "time_embedding_type": "fourier", "resnet_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0), "resnet_num_groups": None, "down_blocks": [ "UNetResSkipDownBlock2D", "UNetResAttnSkipDownBlock2D", "UNetResSkipDownBlock2D", "UNetResSkipDownBlock2D", ], "up_blocks": [ "UNetResSkipUpBlock2D", "UNetResSkipUpBlock2D", "UNetResAttnSkipUpBlock2D", "UNetResSkipUpBlock2D", ], } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNetUnconditionalModel.from_pretrained( "fusing/ncsnpp-ffhq-ve-dummy-update", output_loading_info=True ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained_ve_mid(self): model = UNetUnconditionalModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (256, 256) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step)["sample"] output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) def test_output_pretrained_ve_large(self): model = UNetUnconditionalModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (32, 32) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step)["sample"] output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) class VQModelTests(ModelTesterMixin, unittest.TestCase): model_class = VQModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "ch": 64, "out_ch": 3, "num_res_blocks": 1, "in_channels": 3, "attn_resolutions": [], "resolution": 32, "z_channels": 3, "n_embed": 256, "embed_dim": 3, "sane_index_shape": False, "ch_mult": (1,), "dropout": 0.0, "double_z": False, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass def test_from_pretrained_hub(self): model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = VQModel.from_pretrained("fusing/vqgan-dummy") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution) with torch.no_grad(): output = model(image) output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase): model_class = AutoencoderKL @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "ch": 64, "ch_mult": (1,), "embed_dim": 4, "in_channels": 3, "attn_resolutions": [], "num_res_blocks": 1, "out_ch": 3, "resolution": 32, "z_channels": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass def test_from_pretrained_hub(self): model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution) with torch.no_grad(): output = model(image, sample_posterior=True) output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) class PipelineTesterMixin(unittest.TestCase): def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNetUnconditionalModel( block_channels=(32, 64), num_res_blocks=2, image_size=32, in_channels=3, out_channels=3, down_blocks=("UNetResDownBlock2D", "UNetResAttnDownBlock2D"), up_blocks=("UNetResAttnUpBlock2D", "UNetResUpBlock2D"), ) schedular = DDPMScheduler(num_train_timesteps=10) ddpm = DDPMPipeline(model, schedular) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) generator = torch.manual_seed(0) image = ddpm(generator=generator)["sample"] generator = generator.manual_seed(0) new_image = new_ddpm(generator=generator)["sample"] assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub(self): model_path = "google/ddpm-cifar10-32" ddpm = DDPMPipeline.from_pretrained(model_path) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path) ddpm.scheduler.num_timesteps = 10 ddpm_from_hub.scheduler.num_timesteps = 10 generator = torch.manual_seed(0) image = ddpm(generator=generator)["sample"] generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator)["sample"] assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_ddpm_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNetUnconditionalModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_config(model_id) scheduler = scheduler.set_format("pt") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) generator = torch.manual_seed(0) image = ddpm(generator=generator)["sample"] image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.1601, -0.2823, -0.6123, -0.2305, -0.3236, -0.4706, -0.1691, -0.2836, -0.3231] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ddim_lsun(self): model_id = "google/ddpm-ema-bedroom-256" unet = UNetUnconditionalModel.from_pretrained(model_id) scheduler = DDIMScheduler.from_config(model_id) ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) generator = torch.manual_seed(0) image = ddpm(generator=generator)["sample"] image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor( [-0.9879, -0.9598, -0.9312, -0.9953, -0.9963, -0.9995, -0.9957, -1.0000, -0.9863] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ddim_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNetUnconditionalModel.from_pretrained(model_id) scheduler = DDIMScheduler(tensor_format="pt") ddim = DDIMPipeline(unet=unet, scheduler=scheduler) generator = torch.manual_seed(0) image = ddim(generator=generator, eta=0.0)["sample"] image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_pndm_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNetUnconditionalModel.from_pretrained(model_id) scheduler = PNDMScheduler(tensor_format="pt") pndm = PNDMPipeline(unet=unet, scheduler=scheduler) generator = torch.manual_seed(0) image = pndm(generator=generator)["sample"] image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ldm_text2img(self): ldm = LatentDiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, num_inference_steps=20) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ldm_text2img_fast(self): ldm = LatentDiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, num_inference_steps=1) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_score_sde_ve_pipeline(self): model = UNetUnconditionalModel.from_pretrained("google/ncsnpp-ffhq-1024") torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) scheduler = ScoreSdeVeScheduler.from_config("google/ncsnpp-ffhq-1024") sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler) torch.manual_seed(0) image = sde_ve(num_inference_steps=2) if model.device.type == "cpu": # patrick's cpu expected_image_sum = 3384805888.0 expected_image_mean = 1076.00085 # m1 mbp # expected_image_sum = 3384805376.0 # expected_image_mean = 1076.000610351562 else: expected_image_sum = 3382849024.0 expected_image_mean = 1075.3788 assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2 assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4 @slow def test_ldm_uncond(self): ldm = LatentDiffusionUncondPipeline.from_pretrained("CompVis/ldm-celebahq-256") generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=5)["sample"] image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor( [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2