# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import tempfile import unittest import torch from diffusers import GaussianDiffusion, UNetModel global_rng = random.Random() def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous() class ModelTesterMixin(unittest.TestCase): @property def dummy_input(self): batch_size = 1 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes) time_step = torch.tensor([10]) return (noise, time_step) def test_from_pretrained_save_pretrained(self): model = UNetModel(dim=8, dim_mults=(1, 2), resnet_block_groups=2) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = UNetModel.from_pretrained(tmpdirname) dummy_input = self.dummy_input image = model(*dummy_input) new_image = new_model(*dummy_input) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" def test_from_pretrained_hub(self): model = UNetModel.from_pretrained("fusing/ddpm_dummy") image = model(*self.dummy_input) assert image is not None, "Make sure output is not None" class SamplerTesterMixin(unittest.TestCase): @property def dummy_model(self): return UNetModel.from_pretrained("fusing/ddpm_dummy") def test_from_pretrained_save_pretrained(self): sampler = GaussianDiffusion(image_size=128, timesteps=3, loss_type="l1") with tempfile.TemporaryDirectory() as tmpdirname: sampler.save_config(tmpdirname) new_sampler = GaussianDiffusion.from_config(tmpdirname, return_unused=False) model = self.dummy_model torch.manual_seed(0) sampled_out = sampler.sample(model, batch_size=1) torch.manual_seed(0) sampled_out_new = new_sampler.sample(model, batch_size=1) assert (sampled_out - sampled_out_new).abs().sum() < 1e-5, "Samplers don't give the same output" def test_from_pretrained_hub(self): sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy") model = self.dummy_model sampled_out = sampler.sample(model, batch_size=1) assert sampled_out is not None, "Make sure output is not None"