# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from tqdm.auto import tqdm from ...pipeline_utils import DiffusionPipeline class PNDMPipeline(DiffusionPipeline): def __init__(self, unet, scheduler): super().__init__() scheduler = scheduler.set_format("pt") self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50, output_type="pil"): # For more information on the sampling method you can take a look at Algorithm 2 of # the official paper: https://arxiv.org/pdf/2202.09778.pdf if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size), generator=generator, ) image = image.to(torch_device) self.scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(tqdm(self.scheduler.prk_timesteps)): model_output = self.unet(image, t)["sample"] image = self.scheduler.step_prk(model_output, i, image, num_inference_steps)["prev_sample"] for i, t in enumerate(tqdm(self.scheduler.plms_timesteps)): model_output = self.unet(image, t)["sample"] image = self.scheduler.step_plms(model_output, i, image, num_inference_steps)["prev_sample"] image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) return {"sample": image}