# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import tqdm from ..pipeline_utils import DiffusionPipeline class PNDM(DiffusionPipeline): def __init__(self, unet, noise_scheduler): super().__init__() noise_scheduler = noise_scheduler.set_format("pt") self.register_modules(unet=unet, noise_scheduler=noise_scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" num_trained_timesteps = self.noise_scheduler.timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), generator=generator, ) image = image.to(torch_device) seq = list(inference_step_times) seq_next = [-1] + list(seq[:-1]) model = self.unet warmup_time_steps = list(reversed([(t + 5) // 10 * 10 for t in range(seq[-4], seq[-1], 5)])) cur_residual = 0 prev_image = image ets = [] for i in range(len(warmup_time_steps)): t = warmup_time_steps[i] * torch.ones(image.shape[0]) t_next = (warmup_time_steps[i + 1] if i < len(warmup_time_steps) - 1 else warmup_time_steps[-1]) * torch.ones(image.shape[0]) residual = model(image.to("cuda"), t.to("cuda")) residual = residual.to("cpu") if i % 4 == 0: cur_residual += 1 / 6 * residual ets.append(residual) prev_image = image elif (i - 1) % 4 == 0: cur_residual += 1 / 3 * residual elif (i - 2) % 4 == 0: cur_residual += 1 / 3 * residual elif (i - 3) % 4 == 0: cur_residual += 1 / 6 * residual residual = cur_residual cur_residual = 0 image = image.to("cpu") t_2 = warmup_time_steps[4 * (i // 4)] * torch.ones(image.shape[0]) image = self.noise_scheduler.transfer(prev_image.to("cpu"), t_2, t_next, residual) step_idx = len(seq) - 4 while step_idx >= 0: i = seq[step_idx] j = seq_next[step_idx] t = (torch.ones(image.shape[0]) * i) t_next = (torch.ones(image.shape[0]) * j) residual = model(image.to("cuda"), t.to("cuda")) residual = residual.to("cpu") ets.append(residual) residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4]) img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual) image = img_next step_idx = step_idx - 1 return image