# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch from torch import nn def get_timestep_embedding( timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, scale=1, max_period=10000 ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 emb_coeff = -math.log(max_period) / (half_dim - downscale_freq_shift) emb = torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) emb = torch.exp(emb * emb_coeff) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb # unet_sde_score_estimation.py class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__(self, embedding_size=256, scale=1.0): super().__init__() self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) def forward(self, x): x_proj = x[:, None] * self.W[None, :] * 2 * np.pi return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)