from dataclasses import dataclass from typing import List, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class Flux2PipelineOutput(BaseOutput): """ Output class for Flux2 image generation pipelines. Args: images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be passed to the decoder. """ images: Union[List[PIL.Image.Image], np.ndarray]