# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import sys import tempfile import safetensors from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class DreamBoothLoRAFlux2(ExamplesTestsAccelerate): instance_data_dir = "docs/source/en/imgs" instance_prompt = "dog" pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2" script_path = "examples/dreambooth/train_dreambooth_lora_flux2.py" transformer_layer_type = "single_transformer_blocks.0.attn.to_qkv_mlp_proj" def test_dreambooth_lora_flux2(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --max_sequence_length 8 --text_encoder_out_layers 1 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"transformer"` in their names. starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) self.assertTrue(starts_with_transformer) def test_dreambooth_lora_latent_caching(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --cache_latents --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --max_sequence_length 8 --text_encoder_out_layers 1 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"transformer"` in their names. starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) self.assertTrue(starts_with_transformer) def test_dreambooth_lora_layers(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --cache_latents --learning_rate 5.0e-04 --scale_lr --lora_layers {self.transformer_layer_type} --lr_scheduler constant --lr_warmup_steps 0 --max_sequence_length 8 --text_encoder_out_layers 1 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"transformer"` in their names. In this test, we only params of # transformer.single_transformer_blocks.0.attn.to_k should be in the state dict starts_with_transformer = all( key.startswith(f"transformer.{self.transformer_layer_type}") for key in lora_state_dict.keys() ) self.assertTrue(starts_with_transformer) def test_dreambooth_lora_flux2_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=6 --checkpoints_total_limit=2 --max_sequence_length 8 --checkpointing_steps=2 --text_encoder_out_layers 1 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_dreambooth_lora_flux2_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=4 --checkpointing_steps=2 --max_sequence_length 8 --text_encoder_out_layers 1 """.split() run_command(self._launch_args + test_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) resume_run_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=8 --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 --max_sequence_length 8 --text_encoder_out_layers 1 """.split() run_command(self._launch_args + resume_run_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) def test_dreambooth_lora_with_metadata(self): # Use a `lora_alpha` that is different from `rank`. lora_alpha = 8 rank = 4 with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --lora_alpha={lora_alpha} --rank={rank} --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --max_sequence_length 8 --text_encoder_out_layers 1 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test state_dict_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors") self.assertTrue(os.path.isfile(state_dict_file)) # Check if the metadata was properly serialized. with safetensors.torch.safe_open(state_dict_file, framework="pt", device="cpu") as f: metadata = f.metadata() or {} metadata.pop("format", None) raw = metadata.get(LORA_ADAPTER_METADATA_KEY) if raw: raw = json.loads(raw) loaded_lora_alpha = raw["transformer.lora_alpha"] self.assertTrue(loaded_lora_alpha == lora_alpha) loaded_lora_rank = raw["transformer.r"] self.assertTrue(loaded_lora_rank == rank)