import math import torch import torch.nn.functional as F from torch import nn class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. Uses three q, k, v linear layers to compute attention """ def __init__( self, channels, num_head_channels=None, num_groups=32, rescale_output_factor=1.0, eps=1e-5, ): super().__init__() self.channels = channels self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 self.num_head_size = num_head_channels self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) # define q,k,v as linear layers self.query = nn.Linear(channels, channels) self.key = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels) self.rescale_output_factor = rescale_output_factor self.proj_attn = nn.Linear(channels, channels, 1) def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward(self, hidden_states): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) # transpose query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) # get scores scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) # compute attention output context_states = torch.matmul(attention_probs, value_states) context_states = context_states.permute(0, 2, 1, 3).contiguous() new_context_states_shape = context_states.size()[:-2] + (self.channels,) context_states = context_states.view(new_context_states_shape) # compute next hidden_states hidden_states = self.proj_attn(context_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None): super().__init__() self.n_heads = n_heads self.d_head = d_head self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth) ] ) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = x.permute(0, 2, 3, 1).reshape(b, h * w, c) for block in self.transformer_blocks: x = block(x, context=context) x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) x = self.proj_out(x) return x + x_in class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, x, context=None, mask=None): batch_size, sequence_length, dim = x.shape h = self.heads q = self.to_q(x) context = context if context is not None else x k = self.to_k(context) v = self.to_v(context) q = self.reshape_heads_to_batch_dim(q) k = self.reshape_heads_to_batch_dim(k) v = self.reshape_heads_to_batch_dim(v) sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale if mask is not None: mask = mask.reshape(batch_size, -1) max_neg_value = -torch.finfo(sim.dtype).max mask = mask[:, None, :].repeat(h, 1, 1) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = torch.einsum("b i j, b j d -> b i d", attn, v) out = self.reshape_batch_dim_to_heads(out) return self.to_out(out) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim project_in = GEGLU(dim, inner_dim) self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) def forward(self, x): return self.net(x) # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate)