# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import nn from ..configuration_utils import ConfigMixin from .schedulers_utils import betas_for_alpha_bar, linear_beta_schedule SAMPLING_CONFIG_NAME = "scheduler_config.json" class GlideDDIMScheduler(nn.Module, ConfigMixin): config_name = SAMPLING_CONFIG_NAME def __init__(self, timesteps=1000, beta_schedule="linear", variance_type="fixed_large"): super().__init__() self.register( timesteps=timesteps, beta_schedule=beta_schedule, ) self.num_timesteps = int(timesteps) if beta_schedule == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. scale = 1000 / self.num_timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, axis=0) alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0) variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod) if variance_type == "fixed_small": log_variance = torch.log(variance.clamp(min=1e-20)) elif variance_type == "fixed_large": log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0)) self.register_buffer("betas", betas.to(torch.float32)) self.register_buffer("alphas", alphas.to(torch.float32)) self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32)) self.register_buffer("log_variance", log_variance.to(torch.float32)) def get_alpha(self, time_step): return self.alphas[time_step] def get_beta(self, time_step): return self.betas[time_step] def get_alpha_prod(self, time_step): if time_step < 0: return torch.tensor(1.0) return self.alphas_cumprod[time_step] def sample_variance(self, time_step, shape, device, generator=None): variance = self.log_variance[time_step] nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :] noise = self.sample_noise(shape, device=device, generator=generator) sampled_variance = nonzero_mask * (0.5 * variance).exp() sampled_variance = sampled_variance * noise return sampled_variance def sample_noise(self, shape, device, generator=None): # always sample on CPU to be deterministic return torch.randn(shape, generator=generator).to(device) def __len__(self): return self.num_timesteps