# QwenImage Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese. Check out the model card [here](https://huggingface.co/Qwen/Qwen-Image) to learn more. [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs. ## LoRA for faster inference Use a LoRA from `lightx2v/Qwen-Image-Lightning` to speed up inference by reducing the number of steps. Refer to the code snippet below:
Code ```py from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch import math ckpt_id = "Qwen/Qwen-Image" # From # https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10 scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), # We use shift=3 in distillation "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), # We use shift=3 in distillation "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, # set shift_terminal to None "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = DiffusionPipeline.from_pretrained( ckpt_id, scheduler=scheduler, torch_dtype=torch.bfloat16 ).to("cuda") pipe.load_lora_weights( "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors" ) prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition." negative_prompt = " " image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, num_inference_steps=8, true_cfg_scale=1.0, generator=torch.manual_seed(0), ).images[0] image.save("qwen_fewsteps.png") ```
## QwenImagePipeline [[autodoc]] QwenImagePipeline - all - __call__ ## QwenImagePipelineOutput [[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput