# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...utils import logging from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks from ..modular_pipeline_utils import InsertableDict from .before_denoise import ( FluxImg2ImgPrepareLatentsStep, FluxImg2ImgSetTimestepsStep, FluxPrepareLatentsStep, FluxRoPEInputsStep, FluxSetTimestepsStep, ) from .decoders import FluxDecodeStep from .denoise import FluxDenoiseStep from .encoders import FluxProcessImagesInputStep, FluxTextEncoderStep, FluxVaeEncoderDynamicStep from .inputs import FluxInputsDynamicStep, FluxTextInputStep logger = logging.get_logger(__name__) # pylint: disable=invalid-name # vae encoder (run before before_denoise) FluxImg2ImgVaeEncoderBlocks = InsertableDict( [ ("preprocess", FluxProcessImagesInputStep()), ("encode", FluxVaeEncoderDynamicStep()), ] ) class FluxImg2ImgVaeEncoderStep(SequentialPipelineBlocks): model_name = "flux" block_classes = FluxImg2ImgVaeEncoderBlocks.values() block_names = FluxImg2ImgVaeEncoderBlocks.keys() @property def description(self) -> str: return "Vae encoder step that preprocess andencode the image inputs into their latent representations." class FluxAutoVaeEncoderStep(AutoPipelineBlocks): block_classes = [FluxImg2ImgVaeEncoderStep] block_names = ["img2img"] block_trigger_inputs = ["image"] @property def description(self): return ( "Vae encoder step that encode the image inputs into their latent representations.\n" + "This is an auto pipeline block that works for img2img tasks.\n" + " - `FluxImg2ImgVaeEncoderStep` (img2img) is used when only `image` is provided." + " - if `image` is not provided, step will be skipped." ) # before_denoise: text2img FluxBeforeDenoiseBlocks = InsertableDict( [ ("prepare_latents", FluxPrepareLatentsStep()), ("set_timesteps", FluxSetTimestepsStep()), ("prepare_rope_inputs", FluxRoPEInputsStep()), ] ) class FluxBeforeDenoiseStep(SequentialPipelineBlocks): block_classes = FluxBeforeDenoiseBlocks.values() block_names = FluxBeforeDenoiseBlocks.keys() @property def description(self): return "Before denoise step that prepares the inputs for the denoise step in text-to-image generation." # before_denoise: img2img FluxImg2ImgBeforeDenoiseBlocks = InsertableDict( [ ("prepare_latents", FluxPrepareLatentsStep()), ("set_timesteps", FluxImg2ImgSetTimestepsStep()), ("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()), ("prepare_rope_inputs", FluxRoPEInputsStep()), ] ) class FluxImg2ImgBeforeDenoiseStep(SequentialPipelineBlocks): block_classes = FluxImg2ImgBeforeDenoiseBlocks.values() block_names = FluxImg2ImgBeforeDenoiseBlocks.keys() @property def description(self): return "Before denoise step that prepare the inputs for the denoise step for img2img task." # before_denoise: all task (text2img, img2img) class FluxAutoBeforeDenoiseStep(AutoPipelineBlocks): block_classes = [FluxImg2ImgBeforeDenoiseStep, FluxBeforeDenoiseStep] block_names = ["img2img", "text2image"] block_trigger_inputs = ["image_latents", None] @property def description(self): return ( "Before denoise step that prepare the inputs for the denoise step.\n" + "This is an auto pipeline block that works for text2image.\n" + " - `FluxBeforeDenoiseStep` (text2image) is used.\n" + " - `FluxImg2ImgBeforeDenoiseStep` (img2img) is used when only `image_latents` is provided.\n" ) # denoise: text2image class FluxAutoDenoiseStep(AutoPipelineBlocks): block_classes = [FluxDenoiseStep] block_names = ["denoise"] block_trigger_inputs = [None] @property def description(self) -> str: return ( "Denoise step that iteratively denoise the latents. " "This is a auto pipeline block that works for text2image and img2img tasks." " - `FluxDenoiseStep` (denoise) for text2image and img2img tasks." ) # decode: all task (text2img, img2img) class FluxAutoDecodeStep(AutoPipelineBlocks): block_classes = [FluxDecodeStep] block_names = ["non-inpaint"] block_trigger_inputs = [None] @property def description(self): return "Decode step that decode the denoised latents into image outputs.\n - `FluxDecodeStep`" # inputs: text2image/img2img FluxImg2ImgBlocks = InsertableDict( [("text_inputs", FluxTextInputStep()), ("additional_inputs", FluxInputsDynamicStep())] ) class FluxImg2ImgInputStep(SequentialPipelineBlocks): model_name = "flux" block_classes = FluxImg2ImgBlocks.values() block_names = FluxImg2ImgBlocks.keys() @property def description(self): return "Input step that prepares the inputs for the img2img denoising step. It:\n" " - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n" " - update height/width based `image_latents`, patchify `image_latents`." class FluxImageAutoInputStep(AutoPipelineBlocks): block_classes = [FluxImg2ImgInputStep, FluxTextInputStep] block_names = ["img2img", "text2image"] block_trigger_inputs = ["image_latents", None] @property def description(self): return ( "Input step that standardize the inputs for the denoising step, e.g. make sure inputs have consistent batch size, and patchified. \n" " This is an auto pipeline block that works for text2image/img2img tasks.\n" + " - `FluxImg2ImgInputStep` (img2img) is used when `image_latents` is provided.\n" + " - `FluxTextInputStep` (text2image) is used when `image_latents` are not provided.\n" ) class FluxCoreDenoiseStep(SequentialPipelineBlocks): model_name = "flux" block_classes = [FluxImageAutoInputStep, FluxAutoBeforeDenoiseStep, FluxAutoDenoiseStep] block_names = ["input", "before_denoise", "denoise"] @property def description(self): return ( "Core step that performs the denoising process. \n" + " - `FluxImageAutoInputStep` (input) standardizes the inputs for the denoising step.\n" + " - `FluxAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n" + " - `FluxAutoDenoiseStep` (denoise) iteratively denoises the latents.\n" + "This step supports text-to-image and image-to-image tasks for Flux:\n" + " - for image-to-image generation, you need to provide `image_latents`\n" + " - for text-to-image generation, all you need to provide is prompt embeddings." ) # Auto blocks (text2image and img2img) AUTO_BLOCKS = InsertableDict( [ ("text_encoder", FluxTextEncoderStep()), ("image_encoder", FluxAutoVaeEncoderStep()), ("denoise", FluxCoreDenoiseStep()), ("decode", FluxDecodeStep()), ] ) class FluxAutoBlocks(SequentialPipelineBlocks): model_name = "flux" block_classes = AUTO_BLOCKS.values() block_names = AUTO_BLOCKS.keys() @property def description(self): return ( "Auto Modular pipeline for text-to-image and image-to-image using Flux.\n" + "- for text-to-image generation, all you need to provide is `prompt`\n" + "- for image-to-image generation, you need to provide either `image` or `image_latents`" ) TEXT2IMAGE_BLOCKS = InsertableDict( [ ("text_encoder", FluxTextEncoderStep()), ("input", FluxTextInputStep()), ("prepare_latents", FluxPrepareLatentsStep()), ("set_timesteps", FluxSetTimestepsStep()), ("prepare_rope_inputs", FluxRoPEInputsStep()), ("denoise", FluxDenoiseStep()), ("decode", FluxDecodeStep()), ] ) IMAGE2IMAGE_BLOCKS = InsertableDict( [ ("text_encoder", FluxTextEncoderStep()), ("vae_encoder", FluxVaeEncoderDynamicStep()), ("input", FluxImg2ImgInputStep()), ("prepare_latents", FluxPrepareLatentsStep()), ("set_timesteps", FluxImg2ImgSetTimestepsStep()), ("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()), ("prepare_rope_inputs", FluxRoPEInputsStep()), ("denoise", FluxDenoiseStep()), ("decode", FluxDecodeStep()), ] ) ALL_BLOCKS = {"text2image": TEXT2IMAGE_BLOCKS, "img2img": IMAGE2IMAGE_BLOCKS, "auto": AUTO_BLOCKS}