# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # helpers functions import torch from torch import nn from ..configuration_utils import ConfigMixin from ..modeling_utils import ModelMixin from .attention import AttentionBlock from .embeddings import get_timestep_embedding from .resnet import Downsample, ResnetBlock, Upsample def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) # class ResnetBlock(nn.Module): # def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): # super().__init__() # self.in_channels = in_channels # out_channels = in_channels if out_channels is None else out_channels # self.out_channels = out_channels # self.use_conv_shortcut = conv_shortcut # # self.norm1 = Normalize(in_channels) # self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) # self.temb_proj = torch.nn.Linear(temb_channels, out_channels) # self.norm2 = Normalize(out_channels) # self.dropout = torch.nn.Dropout(dropout) # self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) # if self.in_channels != self.out_channels: # if self.use_conv_shortcut: # self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) # else: # self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) # # def forward(self, x, temb): # h = x # h = self.norm1(h) # h = nonlinearity(h) # h = self.conv1(h) # # h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] # # h = self.norm2(h) # h = nonlinearity(h) # h = self.dropout(h) # h = self.conv2(h) # # if self.in_channels != self.out_channels: # if self.use_conv_shortcut: # x = self.conv_shortcut(x) # else: # x = self.nin_shortcut(x) # # return x + h class UNetModel(ModelMixin, ConfigMixin): def __init__( self, ch=128, out_ch=3, ch_mult=(1, 1, 2, 2, 4, 4), num_res_blocks=2, attn_resolutions=(16,), dropout=0.0, resamp_with_conv=True, in_channels=3, resolution=256, ): super().__init__() self.register_to_config( ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, ) ch_mult = tuple(ch_mult) self.ch = ch self.temb_ch = self.ch * 4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList( [ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ] ) # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttentionBlock(block_in, overwrite_qkv=True)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] skip_in = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): if i_block == self.num_res_blocks: skip_in = ch * in_ch_mult[i_level] block.append( ResnetBlock( in_channels=block_in + skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttentionBlock(block_in, overwrite_qkv=True)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, use_conv=resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, timesteps): assert x.shape[2] == x.shape[3] == self.resolution if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device) # timestep embedding temb = get_timestep_embedding(timesteps, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h