# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import tqdm from ..pipeline_utils import DiffusionPipeline class PNDM(DiffusionPipeline): def __init__(self, unet, noise_scheduler): super().__init__() noise_scheduler = noise_scheduler.set_format("pt") self.register_modules(unet=unet, noise_scheduler=noise_scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50): # For more information on the sampling method you can take a look at Algorithm 2 of # the official paper: https://arxiv.org/pdf/2202.09778.pdf if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), generator=generator, ) image = image.to(torch_device) prk_time_steps = self.noise_scheduler.get_prk_time_steps(num_inference_steps) for t in tqdm.tqdm(range(len(prk_time_steps))): t_orig = prk_time_steps[t] residual = self.unet(image, t_orig) image = self.noise_scheduler.step_prk(residual, image, t, num_inference_steps) timesteps = self.noise_scheduler.get_time_steps(num_inference_steps) for t in tqdm.tqdm(range(len(timesteps))): t_orig = timesteps[t] residual = self.unet(image, t_orig) image = self.noise_scheduler.step_plms(residual, image, t, num_inference_steps) return image