# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import tqdm from ..pipeline_utils import DiffusionPipeline class DDIM(DiffusionPipeline): def __init__(self, unet, noise_scheduler): super().__init__() noise_scheduler = noise_scheduler.set_format("pt") self.register_modules(unet=unet, noise_scheduler=noise_scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" num_trained_timesteps = self.noise_scheduler.config.timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), generator=generator, ) image = image.to(torch_device) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation ( -> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_image -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_image_direction -> "direction pointingc to x_t" # - pred_prev_image -> "x_t-1" for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): # 1. predict noise residual with torch.no_grad(): residual = self.unet(image, inference_step_times[t]) # 2. predict previous mean of image x_t-1 pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta) # 3. optionally sample variance variance = 0 if eta > 0: noise = torch.randn(image.shape, generator=generator).to(image.device) variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise # 4. set current image to prev_image: x_t -> x_t-1 image = pred_prev_image + variance return image