# Copyright 2025 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from PIL import Image from transformers import ( AutoTokenizer, CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModelWithProjection, T5EncoderModel, ) from diffusers import ( AutoencoderKLWan, ChronoEditPipeline, ChronoEditTransformer3DModel, FlowMatchEulerDiscreteScheduler, ) from ...testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = ChronoEditPipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) test_xformers_attention = False supports_dduf = False def get_dummy_components(self): torch.manual_seed(0) vae = AutoencoderKLWan( base_dim=3, z_dim=16, dim_mult=[1, 1, 1, 1], num_res_blocks=1, temperal_downsample=[False, True, True], ) torch.manual_seed(0) # TODO: impl FlowDPMSolverMultistepScheduler scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) transformer = ChronoEditTransformer3DModel( patch_size=(1, 2, 2), num_attention_heads=2, attention_head_dim=12, in_channels=36, out_channels=16, text_dim=32, freq_dim=256, ffn_dim=32, num_layers=2, cross_attn_norm=True, qk_norm="rms_norm_across_heads", rope_max_seq_len=32, image_dim=4, ) torch.manual_seed(0) image_encoder_config = CLIPVisionConfig( hidden_size=4, projection_dim=4, num_hidden_layers=2, num_attention_heads=2, image_size=32, intermediate_size=16, patch_size=1, ) image_encoder = CLIPVisionModelWithProjection(image_encoder_config) torch.manual_seed(0) image_processor = CLIPImageProcessor(crop_size=32, size=32) components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, "image_encoder": image_encoder, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image_height = 16 image_width = 16 image = Image.new("RGB", (image_width, image_height)) inputs = { "image": image, "prompt": "dance monkey", "negative_prompt": "negative", # TODO "height": image_height, "width": image_width, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "num_frames": 5, "max_sequence_length": 16, "output_type": "pt", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames generated_video = video[0] self.assertEqual(generated_video.shape, (5, 3, 16, 16)) # fmt: off expected_slice = torch.tensor([0.4525, 0.4520, 0.4485, 0.4534, 0.4523, 0.4522, 0.4529, 0.4528, 0.5022, 0.5064, 0.5011, 0.5061, 0.5028, 0.4979, 0.5117, 0.5192]) # fmt: on generated_slice = generated_video.flatten() generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]]) self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3)) @unittest.skip("Test not supported") def test_attention_slicing_forward_pass(self): pass @unittest.skip("TODO: revisit failing as it requires a very high threshold to pass") def test_inference_batch_single_identical(self): pass @unittest.skip( "ChronoEditPipeline has to run in mixed precision. Save/Load the entire pipeline in FP16 will result in errors" ) def test_save_load_float16(self): pass