Unverified Commit fc6a91e3 authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[FLUX] support LoRA (#9057)

* feat: lora support for Flux.

add tests

fix imports

major fixes.

* fix

fixes

final fixes?

* fix

* remove is_peft_available.
parent 2b760996
......@@ -66,6 +66,7 @@ if is_torch_available():
"SD3LoraLoaderMixin",
"StableDiffusionXLLoraLoaderMixin",
"LoraLoaderMixin",
"FluxLoraLoaderMixin",
]
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
_import_structure["ip_adapter"] = ["IPAdapterMixin"]
......@@ -83,6 +84,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .ip_adapter import IPAdapterMixin
from .lora_pipeline import (
AmusedLoraLoaderMixin,
FluxLoraLoaderMixin,
LoraLoaderMixin,
SD3LoraLoaderMixin,
StableDiffusionLoraLoaderMixin,
......
......@@ -1475,6 +1475,481 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
super().unfuse_lora(components=components)
class FluxLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`FluxTransformer2DModel`],
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
Specific to [`StableDiffusion3Pipeline`].
"""
_lora_loadable_modules = ["transformer", "text_encoder"]
transformer_name = TRANSFORMER_NAME
text_encoder_name = TEXT_ENCODER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = cls._fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
return state_dict
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=None,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer
def load_lora_into_transformer(cls, state_dict, transformer, adapter_name=None, _pipeline=None):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`SD3Transformer2DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
"""
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
keys = list(state_dict.keys())
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
state_dict = {
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
}
if len(state_dict.keys()) > 0:
# check with first key if is not in peft format
first_key = next(iter(state_dict.keys()))
if "lora_A" not in first_key:
state_dict = convert_unet_state_dict_to_peft(state_dict)
if adapter_name in getattr(transformer, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
lora_config_kwargs.pop("use_dora")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(transformer)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
See `LoRALinearLayer` for more details.
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
from peft import LoraConfig
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
prefix = cls.text_encoder_name if prefix is None else prefix
# Safe prefix to check with.
if any(cls.text_encoder_name in key for key in keys):
# Load the layers corresponding to text encoder and make necessary adjustments.
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
text_encoder_lora_state_dict = {
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
}
if len(text_encoder_lora_state_dict) > 0:
logger.info(f"Loading {prefix}.")
rank = {}
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
# convert state dict
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
for name, _ in text_encoder_attn_modules(text_encoder):
for module in ("out_proj", "q_proj", "k_proj", "v_proj"):
rank_key = f"{name}.{module}.lora_B.weight"
if rank_key not in text_encoder_lora_state_dict:
continue
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
for name, _ in text_encoder_mlp_modules(text_encoder):
for module in ("fc1", "fc2"):
rank_key = f"{name}.{module}.lora_B.weight"
if rank_key not in text_encoder_lora_state_dict:
continue
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
if network_alphas is not None:
alpha_keys = [
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
]
network_alphas = {
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"]:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<", "0.9.0"):
lora_config_kwargs.pop("use_dora")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(text_encoder)
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
# inject LoRA layers and load the state dict
# in transformers we automatically check whether the adapter name is already in use or not
text_encoder.load_adapter(
adapter_name=adapter_name,
adapter_state_dict=text_encoder_lora_state_dict,
peft_config=lora_config,
)
# scale LoRA layers with `lora_scale`
scale_lora_layers(text_encoder, weight=lora_scale)
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (transformer_lora_layers or text_encoder_lora_layers):
raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer
def fuse_lora(
self,
components: List[str] = ["transformer", "text_encoder"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
"""
super().unfuse_lora(components=components)
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
......
......@@ -32,6 +32,7 @@ _SET_ADAPTER_SCALE_FN_MAPPING = {
"UNet2DConditionModel": _maybe_expand_lora_scales,
"UNetMotionModel": _maybe_expand_lora_scales,
"SD3Transformer2DModel": lambda model_cls, weights: weights,
"FluxTransformer2DModel": lambda model_cls, weights: weights,
}
......
......@@ -20,7 +20,7 @@ import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from ...image_processor import VaeImageProcessor
from ...loaders import SD3LoraLoaderMixin
from ...loaders import FluxLoraLoaderMixin
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import FluxTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
......@@ -137,7 +137,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
class FluxPipeline(DiffusionPipeline, SD3LoraLoaderMixin):
class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
r"""
The Flux pipeline for text-to-image generation.
......@@ -321,7 +321,7 @@ class FluxPipeline(DiffusionPipeline, SD3LoraLoaderMixin):
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
......@@ -354,12 +354,12 @@ class FluxPipeline(DiffusionPipeline, SD3LoraLoaderMixin):
)
if self.text_encoder is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale)
......
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import torch
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
@require_peft_backend
class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = FluxPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler()
scheduler_kwargs = {}
uses_flow_matching = True
transformer_kwargs = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"pooled_projection_dim": 32,
"axes_dims_rope": [4, 4, 8],
}
transformer_cls = FluxTransformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"block_out_channels": (4,),
"layers_per_block": 1,
"latent_channels": 1,
"norm_num_groups": 1,
"use_quant_conv": False,
"use_post_quant_conv": False,
"shift_factor": 0.0609,
"scaling_factor": 1.5035,
}
has_two_text_encoders = True
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
@property
def output_shape(self):
return (1, 8, 8, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 4,
"guidance_scale": 0.0,
"height": 8,
"width": 8,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
......@@ -22,6 +22,7 @@ import torch.nn as nn
from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import RepoCard
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoPipelineForImage2Image,
......@@ -80,6 +81,12 @@ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
@property
def output_shape(self):
return (1, 64, 64, 3)
def setUp(self):
super().setUp()
......
......@@ -15,10 +15,9 @@
import sys
import unittest
from diffusers import (
FlowMatchEulerDiscreteScheduler,
StableDiffusion3Pipeline,
)
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
from diffusers.utils.testing_utils import is_peft_available, require_peft_backend, require_torch_gpu, torch_device
......@@ -35,6 +34,7 @@ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = StableDiffusion3Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler()
scheduler_kwargs = {}
uses_flow_matching = True
transformer_kwargs = {
"sample_size": 32,
"patch_size": 1,
......@@ -47,6 +47,7 @@ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
"pooled_projection_dim": 64,
"out_channels": 4,
}
transformer_cls = SD3Transformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
......@@ -61,6 +62,16 @@ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
"scaling_factor": 1.5035,
}
has_three_text_encoders = True
tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder"
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2"
text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
@property
def output_shape(self):
return (1, 32, 32, 3)
@require_torch_gpu
def test_sd3_lora(self):
......
......@@ -22,6 +22,7 @@ import unittest
import numpy as np
import torch
from packaging import version
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
ControlNetModel,
......@@ -89,6 +90,14 @@ class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
"latent_channels": 4,
"sample_size": 128,
}
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "peft-internal-testing/tiny-clip-text-2"
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
@property
def output_shape(self):
return (1, 64, 64, 3)
def setUp(self):
super().setUp()
......
......@@ -12,6 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import tempfile
import unittest
......@@ -19,14 +20,12 @@ from itertools import product
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDIMScheduler,
FlowMatchEulerDiscreteScheduler,
LCMScheduler,
SD3Transformer2DModel,
UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_peft_available
......@@ -72,9 +71,19 @@ class PeftLoraLoaderMixinTests:
pipeline_class = None
scheduler_cls = None
scheduler_kwargs = None
uses_flow_matching = False
has_two_text_encoders = False
has_three_text_encoders = False
text_encoder_cls, text_encoder_id = None, None
text_encoder_2_cls, text_encoder_2_id = None, None
text_encoder_3_cls, text_encoder_3_id = None, None
tokenizer_cls, tokenizer_id = None, None
tokenizer_2_cls, tokenizer_2_id = None, None
tokenizer_3_cls, tokenizer_3_id = None, None
unet_kwargs = None
transformer_cls = None
transformer_kwargs = None
vae_kwargs = None
......@@ -91,28 +100,23 @@ class PeftLoraLoaderMixinTests:
if self.unet_kwargs is not None:
unet = UNet2DConditionModel(**self.unet_kwargs)
else:
transformer = SD3Transformer2DModel(**self.transformer_kwargs)
transformer = self.transformer_cls(**self.transformer_kwargs)
scheduler = scheduler_cls(**self.scheduler_kwargs)
torch.manual_seed(0)
vae = AutoencoderKL(**self.vae_kwargs)
if not self.has_three_text_encoders:
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
text_encoder = self.text_encoder_cls.from_pretrained(self.text_encoder_id)
tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id)
if self.has_two_text_encoders:
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
if self.text_encoder_2_cls is not None:
text_encoder_2 = self.text_encoder_2_cls.from_pretrained(self.text_encoder_2_id)
tokenizer_2 = self.tokenizer_2_cls.from_pretrained(self.tokenizer_2_id)
if self.has_three_text_encoders:
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = CLIPTextModelWithProjection.from_pretrained("hf-internal-testing/tiny-sd3-text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("hf-internal-testing/tiny-sd3-text_encoder-2")
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
if self.text_encoder_3_cls is not None:
text_encoder_3 = self.text_encoder_3_cls.from_pretrained(self.text_encoder_3_id)
tokenizer_3 = self.tokenizer_3_cls.from_pretrained(self.tokenizer_3_id)
text_lora_config = LoraConfig(
r=rank,
......@@ -130,45 +134,39 @@ class PeftLoraLoaderMixinTests:
use_dora=use_dora,
)
if self.has_two_text_encoders or self.has_three_text_encoders:
if self.unet_kwargs is not None:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"image_encoder": None,
"feature_extractor": None,
}
elif self.has_three_text_encoders and self.transformer_kwargs is not None:
pipeline_components = {
"transformer": transformer,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"text_encoder_3": text_encoder_3,
"tokenizer_3": tokenizer_3,
}
else:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": None,
}
pipeline_components = {
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
# Denoiser
if self.unet_kwargs is not None:
pipeline_components.update({"unet": unet})
elif self.transformer_kwargs is not None:
pipeline_components.update({"transformer": transformer})
# Remaining text encoders.
if self.text_encoder_2_cls is not None:
pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
if self.text_encoder_3_cls is not None:
pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})
# Remaining stuff
init_params = inspect.signature(self.pipeline_class.__init__).parameters
if "safety_checker" in init_params:
pipeline_components.update({"safety_checker": None})
if "feature_extractor" in init_params:
pipeline_components.update({"feature_extractor": None})
if "image_encoder" in init_params:
pipeline_components.update({"image_encoder": None})
return pipeline_components, text_lora_config, denoiser_lora_config
@property
def output_shape(self):
raise NotImplementedError
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
......@@ -205,9 +203,7 @@ class PeftLoraLoaderMixinTests:
Tests a simple inference and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -217,8 +213,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs()
output_no_lora = pipe(**inputs).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
def test_simple_inference_with_text_lora(self):
"""
......@@ -226,9 +221,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -238,17 +231,18 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -261,9 +255,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -273,17 +265,18 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -322,9 +315,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -334,26 +325,27 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
# Fusing should still keep the LoRA layers
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
......@@ -366,9 +358,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -378,17 +368,18 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unload_lora_weights()
# unloading should remove the LoRA layers
......@@ -397,10 +388,11 @@ class PeftLoraLoaderMixinTests:
)
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -413,9 +405,7 @@ class PeftLoraLoaderMixinTests:
Tests a simple usecase where users could use saving utilities for LoRA.
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -425,31 +415,32 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
if self.has_two_text_encoders or self.has_three_text_encoders:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
safe_serialization=False,
)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
safe_serialization=False,
)
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
......@@ -457,6 +448,14 @@ class PeftLoraLoaderMixinTests:
safe_serialization=False,
)
if self.has_two_text_encoders:
if "text_encoder_2" not in self.pipeline_class._lora_loadable_modules:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
pipe.unload_lora_weights()
......@@ -466,9 +465,10 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
......@@ -482,9 +482,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, _, _ = self.get_dummy_components(scheduler_cls)
......@@ -503,8 +501,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
......@@ -517,17 +514,18 @@ class PeftLoraLoaderMixinTests:
}
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
state_dict.update(
{
f"text_encoder_2.{module_name}": param
for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
if "text_model.encoder.layers.4" not in module_name
}
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
state_dict.update(
{
f"text_encoder_2.{module_name}": param
for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
if "text_model.encoder.layers.4" not in module_name
}
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -549,9 +547,7 @@ class PeftLoraLoaderMixinTests:
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
......@@ -561,17 +557,17 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
......@@ -587,10 +583,11 @@ class PeftLoraLoaderMixinTests:
)
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
"Lora not correctly set in text encoder 2",
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
"Lora not correctly set in text encoder 2",
)
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
......@@ -604,14 +601,10 @@ class PeftLoraLoaderMixinTests:
Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -621,8 +614,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
if self.unet_kwargs is not None:
......@@ -635,10 +627,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in Unet")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
......@@ -650,32 +643,23 @@ class PeftLoraLoaderMixinTests:
else:
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
if self.has_two_text_encoders or self.has_three_text_encoders:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
saving_kwargs = {
"save_directory": tmpdirname,
"text_encoder_lora_layers": text_encoder_state_dict,
"safe_serialization": False,
}
if self.unet_kwargs is not None:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
unet_lora_layers=denoiser_state_dict,
safe_serialization=False,
)
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
transformer_lora_layers=denoiser_state_dict,
safe_serialization=False,
)
if self.unet_kwargs is not None:
saving_kwargs.update({"unet_lora_layers": denoiser_state_dict})
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
unet_lora_layers=denoiser_state_dict,
safe_serialization=False,
)
saving_kwargs.update({"transformer_lora_layers": denoiser_state_dict})
if self.has_two_text_encoders or self.has_three_text_encoders:
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
saving_kwargs.update({"text_encoder_2_lora_layers": text_encoder_2_state_dict})
self.pipeline_class.save_lora_weights(**saving_kwargs)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
pipe.unload_lora_weights()
......@@ -688,9 +672,10 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
......@@ -703,9 +688,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -715,8 +698,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
if self.unet_kwargs is not None:
......@@ -728,10 +710,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -775,9 +758,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected - with unet
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -787,8 +768,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
if self.unet_kwargs is not None:
......@@ -801,10 +781,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
# Fusing should still keep the LoRA layers
......@@ -813,9 +794,10 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
......@@ -828,9 +810,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -840,8 +820,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
if self.unet_kwargs is not None:
......@@ -853,10 +832,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unload_lora_weights()
# unloading should remove the LoRA layers
......@@ -869,10 +849,11 @@ class PeftLoraLoaderMixinTests:
)
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
......@@ -886,9 +867,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -908,10 +887,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
......@@ -926,9 +906,10 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Unfuse should still keep LoRA layers")
if self.has_two_text_encoders or self.has_three_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
)
# Fuse and unfuse should lead to the same results
self.assertTrue(
......@@ -942,9 +923,7 @@ class PeftLoraLoaderMixinTests:
multiple adapters and set them
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -972,11 +951,12 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
......@@ -1023,9 +1003,7 @@ class PeftLoraLoaderMixinTests:
return
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1047,10 +1025,11 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
pipe.set_adapters("adapter-1", weights_1)
......@@ -1090,9 +1069,7 @@ class PeftLoraLoaderMixinTests:
return
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1120,11 +1097,12 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
scales_2 = {"unet": {"down": 5, "mid": 5}}
......@@ -1170,7 +1148,7 @@ class PeftLoraLoaderMixinTests:
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
"""Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""
if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
if self.pipeline_class.__name__ in ["StableDiffusion3Pipeline", "FluxPipeline"]:
return
def updown_options(blocks_with_tf, layers_per_block, value):
......@@ -1249,7 +1227,9 @@ class PeftLoraLoaderMixinTests:
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
# test if lora block scales can be set with this scale_dict
......@@ -1264,9 +1244,7 @@ class PeftLoraLoaderMixinTests:
multiple adapters and set/delete them
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1294,11 +1272,13 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
......@@ -1370,9 +1350,7 @@ class PeftLoraLoaderMixinTests:
multiple adapters and set them
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1400,11 +1378,13 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
......@@ -1453,9 +1433,7 @@ class PeftLoraLoaderMixinTests:
@skip_mps
def test_lora_fuse_nan(self):
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1501,9 +1479,7 @@ class PeftLoraLoaderMixinTests:
are the expected results
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1539,9 +1515,7 @@ class PeftLoraLoaderMixinTests:
are the expected results
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1607,9 +1581,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected - with unet and multi-adapter case
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1619,8 +1591,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
if self.unet_kwargs is not None:
......@@ -1640,11 +1611,13 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
# set them to multi-adapter inference mode
pipe.set_adapters(["adapter-1", "adapter-2"])
......@@ -1676,9 +1649,7 @@ class PeftLoraLoaderMixinTests:
@require_peft_version_greater(peft_version="0.9.0")
def test_simple_inference_with_dora(self):
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
......@@ -1690,8 +1661,7 @@ class PeftLoraLoaderMixinTests:
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
self.assertTrue(output_no_dora_lora.shape == shape_to_be_checked)
self.assertTrue(output_no_dora_lora.shape == self.output_shape)
pipe.text_encoder.add_adapter(text_lora_config)
if self.unet_kwargs is not None:
......@@ -1704,10 +1674,12 @@ class PeftLoraLoaderMixinTests:
self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
if self.has_two_text_encoders or self.has_three_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
lora_loadable_components = self.pipeline_class._lora_loadable_modules
if "text_encoder_2" in lora_loadable_components:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
......@@ -1723,9 +1695,7 @@ class PeftLoraLoaderMixinTests:
and makes sure it works as expected
"""
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
......@@ -1760,7 +1730,7 @@ class PeftLoraLoaderMixinTests:
_ = pipe(**inputs, generator=torch.manual_seed(0)).images
def test_modify_padding_mode(self):
if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
if self.pipeline_class.__name__ in ["StableDiffusion3Pipeline", "FluxPipeline"]:
return
def set_pad_mode(network, mode="circular"):
......@@ -1769,9 +1739,7 @@ class PeftLoraLoaderMixinTests:
module.padding_mode = mode
scheduler_classes = (
[FlowMatchEulerDiscreteScheduler]
if self.has_three_text_encoders and self.transformer_kwargs
else [DDIMScheduler, LCMScheduler]
[FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
)
for scheduler_cls in scheduler_classes:
components, _, _ = self.get_dummy_components(scheduler_cls)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment