Unverified Commit f486d34b authored by Suvaditya Mukherjee's avatar Suvaditya Mukherjee Committed by GitHub
Browse files

Make ControlNet SD Training Script `torch.compile` compatible (#6525)



* update: make controlnet script torch compile compatible
Signed-off-by: default avatarSuvaditya Mukherjee <suvadityamuk@gmail.com>

* update: correct earlier mistakes for compilation
Signed-off-by: default avatarSuvaditya Mukherjee <suvadityamuk@gmail.com>

* update: fix code style issues
Signed-off-by: default avatarSuvaditya Mukherjee <suvadityamuk@gmail.com>

---------
Signed-off-by: default avatarSuvaditya Mukherjee <suvadityamuk@gmail.com>
parent e44b205e
...@@ -50,6 +50,7 @@ from diffusers import ( ...@@ -50,6 +50,7 @@ from diffusers import (
from diffusers.optimization import get_scheduler from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available(): if is_wandb_available():
...@@ -787,6 +788,12 @@ def main(args): ...@@ -787,6 +788,12 @@ def main(args):
logger.info("Initializing controlnet weights from unet") logger.info("Initializing controlnet weights from unet")
controlnet = ControlNetModel.from_unet(unet) controlnet = ControlNetModel.from_unet(unet)
# Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# `accelerate` 0.16.0 will have better support for customized saving # `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
...@@ -846,9 +853,9 @@ def main(args): ...@@ -846,9 +853,9 @@ def main(args):
" doing mixed precision training, copy of the weights should still be float32." " doing mixed precision training, copy of the weights should still be float32."
) )
if accelerator.unwrap_model(controlnet).dtype != torch.float32: if unwrap_model(controlnet).dtype != torch.float32:
raise ValueError( raise ValueError(
f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" f"Controlnet loaded as datatype {unwrap_model(controlnet).dtype}. {low_precision_error_string}"
) )
# Enable TF32 for faster training on Ampere GPUs, # Enable TF32 for faster training on Ampere GPUs,
...@@ -1015,7 +1022,7 @@ def main(args): ...@@ -1015,7 +1022,7 @@ def main(args):
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning # Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0] encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype) controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
...@@ -1036,7 +1043,8 @@ def main(args): ...@@ -1036,7 +1043,8 @@ def main(args):
sample.to(dtype=weight_dtype) for sample in down_block_res_samples sample.to(dtype=weight_dtype) for sample in down_block_res_samples
], ],
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
).sample return_dict=False,
)[0]
# Get the target for loss depending on the prediction type # Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon": if noise_scheduler.config.prediction_type == "epsilon":
...@@ -1109,7 +1117,7 @@ def main(args): ...@@ -1109,7 +1117,7 @@ def main(args):
# Create the pipeline using using the trained modules and save it. # Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone() accelerator.wait_for_everyone()
if accelerator.is_main_process: if accelerator.is_main_process:
controlnet = accelerator.unwrap_model(controlnet) controlnet = unwrap_model(controlnet)
controlnet.save_pretrained(args.output_dir) controlnet.save_pretrained(args.output_dir)
if args.push_to_hub: if args.push_to_hub:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment