Unverified Commit f33b89ba authored by YiYi Xu's avatar YiYi Xu Committed by GitHub
Browse files

The Modular Diffusers (#9672)



adding modular diffusers as experimental feature 

---------
Co-authored-by: default avatarhlky <hlky@hlky.ac>
Co-authored-by: default avatarÁlvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: default avatarAryan <aryan@huggingface.co>
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 48a6d295
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
from ..configuration_utils import register_to_config
from .guider_utils import BaseGuidance, rescale_noise_cfg
if TYPE_CHECKING:
from ..modular_pipelines.modular_pipeline import BlockState
class TangentialClassifierFreeGuidance(BaseGuidance):
"""
Tangential Classifier Free Guidance (TCFG): https://huggingface.co/papers/2503.18137
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
@register_to_config
def __init__(
self,
guidance_scale: float = 7.5,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
):
super().__init__(start, stop)
self.guidance_scale = guidance_scale
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def prepare_inputs(
self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None
) -> List["BlockState"]:
if input_fields is None:
input_fields = self._input_fields
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for i in range(self.num_conditions):
data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], self._input_predictions[i])
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if not self._is_tcfg_enabled():
pred = pred_cond
else:
pred = normalized_guidance(pred_cond, pred_uncond, self.guidance_scale, self.use_original_formulation)
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred, {}
@property
def is_conditional(self) -> bool:
return self._num_outputs_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_tcfg_enabled():
num_conditions += 1
return num_conditions
def _is_tcfg_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def normalized_guidance(
pred_cond: torch.Tensor, pred_uncond: torch.Tensor, guidance_scale: float, use_original_formulation: bool = False
) -> torch.Tensor:
cond_dtype = pred_cond.dtype
preds = torch.stack([pred_cond, pred_uncond], dim=1).float()
preds = preds.flatten(2)
U, S, Vh = torch.linalg.svd(preds, full_matrices=False)
Vh_modified = Vh.clone()
Vh_modified[:, 1] = 0
uncond_flat = pred_uncond.reshape(pred_uncond.size(0), 1, -1).float()
x_Vh = torch.matmul(uncond_flat, Vh.transpose(-2, -1))
x_Vh_V = torch.matmul(x_Vh, Vh_modified)
pred_uncond = x_Vh_V.reshape(pred_uncond.shape).to(cond_dtype)
pred = pred_cond if use_original_formulation else pred_uncond
shift = pred_cond - pred_uncond
pred = pred + guidance_scale * shift
return pred
......@@ -20,5 +20,7 @@ if is_torch_available():
from .first_block_cache import FirstBlockCacheConfig, apply_first_block_cache
from .group_offloading import apply_group_offloading
from .hooks import HookRegistry, ModelHook
from .layer_skip import LayerSkipConfig, apply_layer_skip
from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook
from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from .smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -84,6 +84,7 @@ if is_torch_available():
"IPAdapterMixin",
"FluxIPAdapterMixin",
"SD3IPAdapterMixin",
"ModularIPAdapterMixin",
]
_import_structure["peft"] = ["PeftAdapterMixin"]
......@@ -101,6 +102,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .ip_adapter import (
FluxIPAdapterMixin,
IPAdapterMixin,
ModularIPAdapterMixin,
SD3IPAdapterMixin,
)
from .lora_pipeline import (
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment