Unverified Commit f1f38ffb authored by Ishan Modi's avatar Ishan Modi Committed by GitHub
Browse files

[ControlNet] Adds controlnet for SanaTransformer (#11040)



* added controlnet for sana transformer

* improve code quality

* addressed PR comments

* bug fixes

* added test cases

* update

* added dummy objects

* addressed PR comments

* update

* Forcing update

* add to docs

* code quality

* addressed PR comments

* addressed PR comments

* update

* addressed PR comments

* added proper styling

* update

* Revert "added proper styling"

This reverts commit 344ee8a7014ada095b295034ef84341f03b0e359.

* manually ordered

* Apply suggestions from code review

---------
Co-authored-by: default avatarAryan <contact.aryanvs@gmail.com>
parent 36538e11
......@@ -270,16 +270,18 @@
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sana
title: SanaControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
......@@ -424,6 +426,8 @@
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
......
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SanaControlNetModel
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This model was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.
## SanaControlNetModel
[[autodoc]] SanaControlNetModel
## SanaControlNetOutput
[[autodoc]] models.controlnets.controlnet_sana.SanaControlNetOutput
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This pipeline was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.
## SanaControlNetPipeline
[[autodoc]] SanaControlNetPipeline
- all
- __call__
## SanaPipelineOutput
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput
\ No newline at end of file
#!/usr/bin/env python
from __future__ import annotations
import argparse
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from diffusers import (
SanaControlNetModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
def main(args):
file_path = args.orig_ckpt_path
all_state_dict = torch.load(file_path, weights_only=True)
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}
# Patch embeddings.
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
# AdaLN-single LN
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
# Shared norm.
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")
# y norm
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")
# Positional embedding interpolation scale.
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}
# ControlNet Input Projection.
converted_state_dict["input_block.weight"] = state_dict.pop("controlnet.0.before_proj.weight")
converted_state_dict["input_block.bias"] = state_dict.pop("controlnet.0.before_proj.bias")
for depth in range(7):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"controlnet.{depth}.copied_block.scale_shift_table"
)
# Linear Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.attn.qkv.weight"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.bias"
)
# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.point_conv.conv.weight"
)
# Cross-attention.
q = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(
state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.bias"), 2, dim=0
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.bias"
)
# ControlNet After Projection
converted_state_dict[f"controlnet_blocks.{depth}.weight"] = state_dict.pop(
f"controlnet.{depth}.after_proj.weight"
)
converted_state_dict[f"controlnet_blocks.{depth}.bias"] = state_dict.pop(f"controlnet.{depth}.after_proj.bias")
# ControlNet
with CTX():
controlnet = SanaControlNetModel(
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
num_layers=model_kwargs[args.model_type]["num_layers"],
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
caption_channels=2304,
sample_size=args.image_size // 32,
interpolation_scale=interpolation_scale[args.image_size],
)
if is_accelerate_available():
load_model_dict_into_meta(controlnet, converted_state_dict)
else:
controlnet.load_state_dict(converted_state_dict, strict=True, assign=True)
num_model_params = sum(p.numel() for p in controlnet.parameters())
print(f"Total number of controlnet parameters: {num_model_params}")
controlnet = controlnet.to(weight_dtype)
controlnet.load_state_dict(converted_state_dict, strict=True)
print(f"Saving Sana ControlNet in Diffusers format in {args.dump_path}.")
controlnet.save_pretrained(args.dump_path)
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
VARIANT_MAPPING = {
"fp32": None,
"fp16": "fp16",
"bf16": "bf16",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--image_size",
default=1024,
type=int,
choices=[512, 1024, 2048, 4096],
required=False,
help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
)
parser.add_argument(
"--model_type",
default="SanaMS_1600M_P1_ControlNet_D7",
type=str,
choices=["SanaMS_1600M_P1_ControlNet_D7", "SanaMS_600M_P1_ControlNet_D7"],
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
args = parser.parse_args()
model_kwargs = {
"SanaMS_1600M_P1_ControlNet_D7": {
"num_attention_heads": 70,
"attention_head_dim": 32,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"num_layers": 7,
},
"SanaMS_600M_P1_ControlNet_D7": {
"num_attention_heads": 36,
"attention_head_dim": 32,
"num_cross_attention_heads": 16,
"cross_attention_head_dim": 72,
"cross_attention_dim": 1152,
"num_layers": 7,
},
}
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = DTYPE_MAPPING[args.dtype]
variant = VARIANT_MAPPING[args.dtype]
main(args)
......@@ -190,6 +190,7 @@ else:
"OmniGenTransformer2DModel",
"PixArtTransformer2DModel",
"PriorTransformer",
"SanaControlNetModel",
"SanaTransformer2DModel",
"SD3ControlNetModel",
"SD3MultiControlNetModel",
......@@ -428,6 +429,7 @@ else:
"PixArtSigmaPAGPipeline",
"PixArtSigmaPipeline",
"ReduxImageEncoder",
"SanaControlNetPipeline",
"SanaPAGPipeline",
"SanaPipeline",
"SanaSprintPipeline",
......@@ -782,6 +784,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
OmniGenTransformer2DModel,
PixArtTransformer2DModel,
PriorTransformer,
SanaControlNetModel,
SanaTransformer2DModel,
SD3ControlNetModel,
SD3MultiControlNetModel,
......@@ -999,6 +1002,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
PixArtSigmaPAGPipeline,
PixArtSigmaPipeline,
ReduxImageEncoder,
SanaControlNetPipeline,
SanaPAGPipeline,
SanaPipeline,
SanaSprintPipeline,
......
......@@ -49,6 +49,7 @@ if is_torch_available():
"HunyuanDiT2DControlNetModel",
"HunyuanDiT2DMultiControlNetModel",
]
_import_structure["controlnets.controlnet_sana"] = ["SanaControlNetModel"]
_import_structure["controlnets.controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
_import_structure["controlnets.controlnet_sparsectrl"] = ["SparseControlNetModel"]
_import_structure["controlnets.controlnet_union"] = ["ControlNetUnionModel"]
......@@ -134,6 +135,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
HunyuanDiT2DMultiControlNetModel,
MultiControlNetModel,
MultiControlNetUnionModel,
SanaControlNetModel,
SD3ControlNetModel,
SD3MultiControlNetModel,
SparseControlNetModel,
......
......@@ -9,6 +9,7 @@ if is_torch_available():
HunyuanDiT2DControlNetModel,
HunyuanDiT2DMultiControlNetModel,
)
from .controlnet_sana import SanaControlNetModel
from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel
from .controlnet_sparsectrl import (
SparseControlNetConditioningEmbedding,
......
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
from ..attention_processor import AttentionProcessor
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle, RMSNorm
from ..transformers.sana_transformer import SanaTransformerBlock
from .controlnet import zero_module
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class SanaControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
class SanaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]
_skip_layerwise_casting_patterns = ["patch_embed", "norm"]
@register_to_config
def __init__(
self,
in_channels: int = 32,
out_channels: Optional[int] = 32,
num_attention_heads: int = 70,
attention_head_dim: int = 32,
num_layers: int = 7,
num_cross_attention_heads: Optional[int] = 20,
cross_attention_head_dim: Optional[int] = 112,
cross_attention_dim: Optional[int] = 2240,
caption_channels: int = 2304,
mlp_ratio: float = 2.5,
dropout: float = 0.0,
attention_bias: bool = False,
sample_size: int = 32,
patch_size: int = 1,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
) -> None:
super().__init__()
out_channels = out_channels or in_channels
inner_dim = num_attention_heads * attention_head_dim
# 1. Patch Embedding
self.patch_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
pos_embed_type="sincos" if interpolation_scale is not None else None,
)
# 2. Additional condition embeddings
self.time_embed = AdaLayerNormSingle(inner_dim)
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
# 3. Transformer blocks
self.transformer_blocks = nn.ModuleList(
[
SanaTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
num_cross_attention_heads=num_cross_attention_heads,
cross_attention_head_dim=cross_attention_head_dim,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
mlp_ratio=mlp_ratio,
)
for _ in range(num_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
self.input_block = zero_module(nn.Linear(inner_dim, inner_dim))
for _ in range(len(self.transformer_blocks)):
controlnet_block = nn.Linear(inner_dim, inner_dim)
controlnet_block = zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size, num_channels, height, width = hidden_states.shape
p = self.config.patch_size
post_patch_height, post_patch_width = height // p, width // p
hidden_states = self.patch_embed(hidden_states)
hidden_states = hidden_states + self.input_block(self.patch_embed(controlnet_cond.to(hidden_states.dtype)))
timestep, embedded_timestep = self.time_embed(
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
# 2. Transformer blocks
block_res_samples = ()
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.transformer_blocks:
hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_height,
post_patch_width,
)
block_res_samples = block_res_samples + (hidden_states,)
else:
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_height,
post_patch_width,
)
block_res_samples = block_res_samples + (hidden_states,)
# 3. ControlNet blocks
controlnet_block_res_samples = ()
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
block_res_sample = controlnet_block(block_res_sample)
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
if not return_dict:
return (controlnet_block_res_samples,)
return SanaControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
......@@ -483,6 +483,7 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
encoder_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
......@@ -546,7 +547,7 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
# 2. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.transformer_blocks:
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
......@@ -557,9 +558,11 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
post_patch_height,
post_patch_width,
)
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
else:
for block in self.transformer_blocks:
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
attention_mask,
......@@ -569,6 +572,8 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
post_patch_height,
post_patch_width,
)
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
# 3. Normalization
hidden_states = self.norm_out(hidden_states, embedded_timestep, self.scale_shift_table)
......
......@@ -281,7 +281,7 @@ else:
_import_structure["paint_by_example"] = ["PaintByExamplePipeline"]
_import_structure["pia"] = ["PIAPipeline"]
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"]
_import_structure["sana"] = ["SanaPipeline", "SanaSprintPipeline"]
_import_structure["sana"] = ["SanaPipeline", "SanaSprintPipeline", "SanaControlNetPipeline"]
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
_import_structure["stable_audio"] = [
......@@ -664,7 +664,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .paint_by_example import PaintByExamplePipeline
from .pia import PIAPipeline
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
from .sana import SanaPipeline, SanaSprintPipeline
from .sana import SanaControlNetPipeline, SanaPipeline, SanaSprintPipeline
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
......
......@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_sana"] = ["SanaPipeline"]
_import_structure["pipeline_sana_controlnet"] = ["SanaControlNetPipeline"]
_import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
......@@ -34,6 +35,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_sana import SanaPipeline
from .pipeline_sana_controlnet import SanaControlNetPipeline
from .pipeline_sana_sprint import SanaSprintPipeline
else:
import sys
......
......@@ -354,9 +354,7 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
if device is None:
device = self._execution_device
if self.transformer is not None:
dtype = self.transformer.dtype
elif self.text_encoder is not None:
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
else:
dtype = None
......@@ -928,22 +926,22 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
transformer_dtype = self.transformer.dtype
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
timestep = t.expand(latent_model_input.shape[0])
timestep = timestep * self.transformer.config.timestep_scale
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
latent_model_input.to(dtype=transformer_dtype),
encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
encoder_attention_mask=prompt_attention_mask,
timestep=timestep,
return_dict=False,
......@@ -959,8 +957,6 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
else:
noise_pred = noise_pred
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
......
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
import inspect
import re
import urllib.parse as ul
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput, PixArtImageProcessor
from ...loaders import SanaLoraLoaderMixin
from ...models import AutoencoderDC, SanaControlNetModel, SanaTransformer2DModel
from ...schedulers import DPMSolverMultistepScheduler
from ...utils import (
BACKENDS_MAPPING,
USE_PEFT_BACKEND,
is_bs4_available,
is_ftfy_available,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..pixart_alpha.pipeline_pixart_alpha import (
ASPECT_RATIO_512_BIN,
ASPECT_RATIO_1024_BIN,
)
from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
from .pipeline_output import SanaPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
ASPECT_RATIO_4096_BIN = {
"0.25": [2048.0, 8192.0],
"0.26": [2048.0, 7936.0],
"0.27": [2048.0, 7680.0],
"0.28": [2048.0, 7424.0],
"0.32": [2304.0, 7168.0],
"0.33": [2304.0, 6912.0],
"0.35": [2304.0, 6656.0],
"0.4": [2560.0, 6400.0],
"0.42": [2560.0, 6144.0],
"0.48": [2816.0, 5888.0],
"0.5": [2816.0, 5632.0],
"0.52": [2816.0, 5376.0],
"0.57": [3072.0, 5376.0],
"0.6": [3072.0, 5120.0],
"0.68": [3328.0, 4864.0],
"0.72": [3328.0, 4608.0],
"0.78": [3584.0, 4608.0],
"0.82": [3584.0, 4352.0],
"0.88": [3840.0, 4352.0],
"0.94": [3840.0, 4096.0],
"1.0": [4096.0, 4096.0],
"1.07": [4096.0, 3840.0],
"1.13": [4352.0, 3840.0],
"1.21": [4352.0, 3584.0],
"1.29": [4608.0, 3584.0],
"1.38": [4608.0, 3328.0],
"1.46": [4864.0, 3328.0],
"1.67": [5120.0, 3072.0],
"1.75": [5376.0, 3072.0],
"2.0": [5632.0, 2816.0],
"2.09": [5888.0, 2816.0],
"2.4": [6144.0, 2560.0],
"2.5": [6400.0, 2560.0],
"2.89": [6656.0, 2304.0],
"3.0": [6912.0, 2304.0],
"3.11": [7168.0, 2304.0],
"3.62": [7424.0, 2048.0],
"3.75": [7680.0, 2048.0],
"3.88": [7936.0, 2048.0],
"4.0": [8192.0, 2048.0],
}
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import SanaControlNetPipeline
>>> from diffusers.utils import load_image
>>> pipe = SanaControlNetPipeline.from_pretrained(
... "ishan24/Sana_600M_1024px_ControlNetPlus_diffusers",
... variant="fp16",
... torch_dtype={"default": torch.bfloat16, "controlnet": torch.float16, "transformer": torch.float16},
... device_map="balanced",
... )
>>> cond_image = load_image(
... "https://huggingface.co/ishan24/Sana_600M_1024px_ControlNet_diffusers/resolve/main/hed_example.png"
... )
>>> prompt = 'a cat with a neon sign that says "Sana"'
>>> image = pipe(
... prompt,
... control_image=cond_image,
... ).images[0]
>>> image.save("output.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class SanaControlNetPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
r"""
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
"""
# fmt: off
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
# fmt: on
model_cpu_offload_seq = "text_encoder->controlnet->transformer->vae"
_callback_tensor_inputs = ["latents", "control_image", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
text_encoder: Gemma2PreTrainedModel,
vae: AutoencoderDC,
transformer: SanaTransformer2DModel,
controlnet: SanaControlNetModel,
scheduler: DPMSolverMultistepScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
controlnet=controlnet,
scheduler=scheduler,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
if hasattr(self, "vae") and self.vae is not None
else 32
)
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
def _get_gemma_prompt_embeds(
self,
prompt: Union[str, List[str]],
device: torch.device,
dtype: torch.dtype,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
prompt = [prompt] if isinstance(prompt, str) else prompt
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
# prepare complex human instruction
if not complex_human_instruction:
max_length_all = max_sequence_length
else:
chi_prompt = "\n".join(complex_human_instruction)
prompt = [chi_prompt + p for p in prompt]
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length_all,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
return prompt_embeds, prompt_attention_mask
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
PixArt-Alpha, this should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
if device is None:
device = self._execution_device
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
else:
dtype = None
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
# See Section 3.1. of the paper.
max_length = max_sequence_length
select_index = [0] + list(range(-max_length + 1, 0))
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
prompt=prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=complex_human_instruction,
)
prompt_embeds = prompt_embeds[:, select_index]
prompt_attention_mask = prompt_attention_mask[:, select_index]
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
prompt=negative_prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=False,
)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
if self.text_encoder is not None:
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_on_step_end_tensor_inputs=None,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 32 != 0 or width % 32 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if isinstance(image, torch.Tensor):
pass
else:
image = self.image_processor.preprocess(image, height=height, width=width)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 4.5,
control_image: PipelineImageInput = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
num_images_per_prompt: Optional[int] = 1,
height: int = 1024,
width: int = 1024,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
clean_caption: bool = False,
use_resolution_binning: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 300,
complex_human_instruction: List[str] = [
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
"Here are examples of how to transform or refine prompts:",
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
"User Prompt: ",
],
) -> Union[SanaPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 20):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
images must be passed as a list such that each element of the list can be correctly batched for input
to a single ControlNet.
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
attention_kwargs:
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
the requested resolution. Useful for generating non-square images.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to `300`):
Maximum sequence length to use with the `prompt`.
complex_human_instruction (`List[str]`, *optional*):
Instructions for complex human attention:
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
Examples:
Returns:
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
if use_resolution_binning:
if self.transformer.config.sample_size == 128:
aspect_ratio_bin = ASPECT_RATIO_4096_BIN
elif self.transformer.config.sample_size == 64:
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
elif self.transformer.config.sample_size == 32:
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
elif self.transformer.config.sample_size == 16:
aspect_ratio_bin = ASPECT_RATIO_512_BIN
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
self.check_inputs(
prompt,
height,
width,
callback_on_step_end_tensor_inputs,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._interrupt = False
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=complex_human_instruction,
lora_scale=lora_scale,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 4. Prepare control image
if isinstance(self.controlnet, SanaControlNetModel):
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=False,
)
height, width = control_image.shape[-2:]
control_image = self.vae.encode(control_image).latent
control_image = control_image * self.vae.config.scaling_factor
else:
raise ValueError("`controlnet` must be of type `SanaControlNetModel`.")
# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 6. Prepare latents.
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
height,
width,
torch.float32,
device,
generator,
latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
controlnet_dtype = self.controlnet.dtype
transformer_dtype = self.transformer.dtype
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# controlnet(s) inference
controlnet_block_samples = self.controlnet(
latent_model_input.to(dtype=controlnet_dtype),
encoder_hidden_states=prompt_embeds.to(dtype=controlnet_dtype),
encoder_attention_mask=prompt_attention_mask,
timestep=timestep,
return_dict=False,
attention_kwargs=self.attention_kwargs,
controlnet_cond=control_image,
conditioning_scale=controlnet_conditioning_scale,
)[0]
# predict noise model_output
noise_pred = self.transformer(
latent_model_input.to(dtype=transformer_dtype),
encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
encoder_attention_mask=prompt_attention_mask,
timestep=timestep,
return_dict=False,
attention_kwargs=self.attention_kwargs,
controlnet_block_samples=tuple(t.to(dtype=transformer_dtype) for t in controlnet_block_samples),
)[0]
noise_pred = noise_pred.float()
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = latents.to(self.vae.dtype)
try:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
except torch.cuda.OutOfMemoryError as e:
warnings.warn(
f"{e}. \n"
f"Try to use VAE tiling for large images. For example: \n"
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
)
if use_resolution_binning:
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return SanaPipelineOutput(images=image)
......@@ -295,9 +295,7 @@ class SanaSprintPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
if device is None:
device = self._execution_device
if self.transformer is not None:
dtype = self.transformer.dtype
elif self.text_encoder is not None:
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
else:
dtype = None
......@@ -806,13 +804,14 @@ class SanaSprintPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
transformer_dtype = self.transformer.dtype
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(prompt_embeds.dtype)
timestep = t.expand(latents.shape[0])
latents_model_input = latents / self.scheduler.config.sigma_data
scm_timestep = torch.sin(timestep) / (torch.cos(timestep) + torch.sin(timestep))
......@@ -821,12 +820,11 @@ class SanaSprintPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
latent_model_input = latents_model_input * torch.sqrt(
scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2
)
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
latent_model_input.to(dtype=transformer_dtype),
encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
encoder_attention_mask=prompt_attention_mask,
guidance=guidance,
timestep=scm_timestep,
......
......@@ -790,6 +790,21 @@ class PriorTransformer(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class SanaControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SanaTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
......
......@@ -1502,6 +1502,21 @@ class ReduxImageEncoder(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class SanaControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class SanaPAGPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......
# Copyright 2024 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import numpy as np
import torch
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import (
AutoencoderDC,
FlowMatchEulerDiscreteScheduler,
SanaControlNetModel,
SanaControlNetPipeline,
SanaTransformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class SanaControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SanaControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
def get_dummy_components(self):
torch.manual_seed(0)
controlnet = SanaControlNetModel(
patch_size=1,
in_channels=4,
out_channels=4,
num_layers=1,
num_attention_heads=2,
attention_head_dim=4,
num_cross_attention_heads=2,
cross_attention_head_dim=4,
cross_attention_dim=8,
caption_channels=8,
sample_size=32,
)
torch.manual_seed(0)
transformer = SanaTransformer2DModel(
patch_size=1,
in_channels=4,
out_channels=4,
num_layers=1,
num_attention_heads=2,
attention_head_dim=4,
num_cross_attention_heads=2,
cross_attention_head_dim=4,
cross_attention_dim=8,
caption_channels=8,
sample_size=32,
)
torch.manual_seed(0)
vae = AutoencoderDC(
in_channels=3,
latent_channels=4,
attention_head_dim=2,
encoder_block_types=(
"ResBlock",
"EfficientViTBlock",
),
decoder_block_types=(
"ResBlock",
"EfficientViTBlock",
),
encoder_block_out_channels=(8, 8),
decoder_block_out_channels=(8, 8),
encoder_qkv_multiscales=((), (5,)),
decoder_qkv_multiscales=((), (5,)),
encoder_layers_per_block=(1, 1),
decoder_layers_per_block=[1, 1],
downsample_block_type="conv",
upsample_block_type="interpolate",
decoder_norm_types="rms_norm",
decoder_act_fns="silu",
scaling_factor=0.41407,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
torch.manual_seed(0)
text_encoder_config = Gemma2Config(
head_dim=16,
hidden_size=8,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=8192,
model_type="gemma2",
num_attention_heads=2,
num_hidden_layers=1,
num_key_value_heads=2,
vocab_size=8,
attn_implementation="eager",
)
text_encoder = Gemma2Model(text_encoder_config)
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"controlnet": controlnet,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
control_image = torch.randn(1, 3, 32, 32, generator=generator)
inputs = {
"prompt": "",
"negative_prompt": "",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
"complex_human_instruction": None,
"control_image": control_image,
"controlnet_conditioning_scale": 1.0,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs)[0]
generated_image = image[0]
self.assertEqual(generated_image.shape, (3, 32, 32))
expected_image = torch.randn(3, 32, 32)
max_diff = np.abs(generated_image - expected_image).max()
self.assertLessEqual(max_diff, 1e10)
def test_callback_inputs(self):
sig = inspect.signature(self.pipeline_class.__call__)
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
has_callback_step_end = "callback_on_step_end" in sig.parameters
if not (has_callback_tensor_inputs and has_callback_step_end):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
self.assertTrue(
hasattr(pipe, "_callback_tensor_inputs"),
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
)
def callback_inputs_subset(pipe, i, t, callback_kwargs):
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
def callback_inputs_all(pipe, i, t, callback_kwargs):
for tensor_name in pipe._callback_tensor_inputs:
assert tensor_name in callback_kwargs
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
inputs = self.get_dummy_inputs(torch_device)
# Test passing in a subset
inputs["callback_on_step_end"] = callback_inputs_subset
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
output = pipe(**inputs)[0]
# Test passing in a everything
inputs["callback_on_step_end"] = callback_inputs_all
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
output = pipe(**inputs)[0]
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
is_last = i == (pipe.num_timesteps - 1)
if is_last:
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
return callback_kwargs
inputs["callback_on_step_end"] = callback_inputs_change_tensor
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
output = pipe(**inputs)[0]
assert output.abs().sum() < 1e10
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.2):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_without_tiling = pipe(**inputs)[0]
# With tiling
pipe.vae.enable_tiling(
tile_sample_min_height=96,
tile_sample_min_width=96,
tile_sample_stride_height=64,
tile_sample_stride_width=64,
)
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
# TODO(aryan): Create a dummy gemma model with smol vocab size
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_consistent(self):
pass
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_single_identical(self):
pass
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment