Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
f1823bbe
Commit
f1823bbe
authored
Jun 09, 2022
by
patil-suraj
Browse files
get the ldm pipeline working
parent
e3820fa3
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
5 additions
and
8 deletions
+5
-8
models/vision/latent_diffusion/modeling_latent_diffusion.py
models/vision/latent_diffusion/modeling_latent_diffusion.py
+4
-7
src/diffusers/models/unet_ldm.py
src/diffusers/models/unet_ldm.py
+1
-1
No files found.
models/vision/latent_diffusion/modeling_latent_diffusion.py
View file @
f1823bbe
...
...
@@ -773,7 +773,6 @@ class AutoencoderKL(ModelMixin, ConfigMixin):
in_channels
,
resolution
,
z_channels
,
n_embed
,
embed_dim
,
remap
=
None
,
sane_index_shape
=
False
,
# tell vector quantizer to return indices as bhw
...
...
@@ -794,7 +793,6 @@ class AutoencoderKL(ModelMixin, ConfigMixin):
in_channels
=
in_channels
,
resolution
=
resolution
,
z_channels
=
z_channels
,
n_embed
=
n_embed
,
embed_dim
=
embed_dim
,
remap
=
remap
,
sane_index_shape
=
sane_index_shape
,
...
...
@@ -877,17 +875,16 @@ class LatentDiffusion(DiffusionPipeline):
# get text embedding
text_input
=
self
.
tokenizer
(
prompt
,
padding
=
"max_length"
,
max_length
=
77
,
return_tensors
=
'pt'
).
to
(
torch_device
)
text_embedding
=
self
.
bert
(
**
text_input
)[
0
]
text_embedding
=
self
.
bert
(
text_input
.
input_ids
)[
0
]
num_trained_timesteps
=
self
.
noise_scheduler
.
num_timesteps
inference_step_times
=
range
(
0
,
num_trained_timesteps
,
num_trained_timesteps
//
num_inference_steps
)
image
=
self
.
noise_scheduler
.
sample_noise
(
(
batch_size
,
self
.
unet
.
in_channels
,
self
.
unet
.
resolution
//
8
,
self
.
unet
.
resolution
//
8
),
(
batch_size
,
self
.
unet
.
in_channels
,
self
.
unet
.
image_size
,
self
.
unet
.
image_size
),
device
=
torch_device
,
generator
=
generator
,
)
for
t
in
tqdm
.
tqdm
(
reversed
(
range
(
num_inference_steps
)),
total
=
num_inference_steps
):
# get actual t and t-1
train_step
=
inference_step_times
[
t
]
...
...
@@ -928,8 +925,8 @@ class LatentDiffusion(DiffusionPipeline):
else
:
image
=
pred_mean
image
=
1
/
image
image
=
self
.
vqvae
(
image
)
image
=
1
/
0.18215
*
image
image
=
self
.
vqvae
.
decode
(
image
)
image
=
torch
.
clamp
((
image
+
1.0
)
/
2.0
,
min
=
0.0
,
max
=
1.0
)
return
image
src/diffusers/models/unet_ldm.py
View file @
f1823bbe
...
...
@@ -1026,7 +1026,7 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
hs
=
[]
if
not
torch
.
is_tensor
(
timesteps
):
timesteps
=
torch
.
tensor
([
timesteps
],
dtype
=
torch
.
long
,
device
=
x
.
device
)
t_emb
=
timestep_embedding
(
timesteps
,
self
.
model_channels
,
repeat_only
=
False
)
t_emb
=
timestep_embedding
(
timesteps
,
self
.
model_channels
)
emb
=
self
.
time_embed
(
t_emb
)
if
self
.
num_classes
is
not
None
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment