@@ -243,8 +243,26 @@ Load the LoRA weights from your finetuned DreamBooth model *on top of the base m
...
@@ -243,8 +243,26 @@ Load the LoRA weights from your finetuned DreamBooth model *on top of the base m
>>> image.save("bucket-dog.png")
>>> image.save("bucket-dog.png")
```
```
Note that the use of [`LoraLoaderMixin.load_lora_weights`] is preferred to [`UNet2DConditionLoadersMixin.load_attn_procs`] for loading LoRA parameters. This is because
If you used `--train_text_encoder` during training, then use `pipe.load_lora_weights()` to load the LoRA
[`LoraLoaderMixin.load_lora_weights`] can handle the following situations:
image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
```
Note that the use of [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] is preferred to [`~diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs`] for loading LoRA parameters. This is because
[`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] can handle the following situations:
* LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do:
* LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do:
**Note** that we will gradually be depcrecating the use of [`UNet2DConditionLoadersMixin.load_attn_procs`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs) since we now have a more general
If you used `--train_text_encoder` during training, then use `pipe.load_lora_weights()` to load the LoRA
method to load the LoRA parameters -- [`LoraLoaderMixin.load_lora_weights`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights). This is because
weights. For example:
[`LoraLoaderMixin.load_lora_weights`] can handle the following situations:
image=pipe("A picture of a sks dog in a bucket",num_inference_steps=25).images[0]
```
Note that the use of [`LoraLoaderMixin.load_lora_weights`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights) is preferred to [`UNet2DConditionLoadersMixin.load_attn_procs`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs) for loading LoRA parameters. This is because
`LoraLoaderMixin.load_lora_weights` can handle the following situations:
* LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do:
* LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do: