Unverified Commit e7044a42 authored by gzguevara's avatar gzguevara Committed by GitHub
Browse files

multi-subject-dreambooth-inpainting with 🤗 datasets (#6378)



* files added

* fixing code quality

* fixing code quality

* fixing code quality

* fixing code quality

* sorted import block

* seperated import wandb

* ruff on script

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 034b39b8
# Multi Subject Dreambooth for Inpainting Models
Please note that this project is not actively maintained. However, you can open an issue and tag @gzguevara.
[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. This project consists of **two parts**. Training Stable Diffusion for inpainting requieres prompt-image-mask pairs. The Unet of inpainiting models have 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself).
**The first part**, the `multi_inpaint_dataset.ipynb` notebook, demonstrates how make a 🤗 dataset of prompt-image-mask pairs. You can, however, skip the first part and move straight to the second part with the example datasets in this project. ([cat toy dataset masked](https://huggingface.co/datasets/gzguevara/cat_toy_masked), [mr. potato head dataset masked](https://huggingface.co/datasets/gzguevara/mr_potato_head_masked))
**The second part**, the `train_multi_subject_inpainting.py` training script, demonstrates how to implement a training procedure for one or more subjects and adapt it for stable diffusion for inpainting.
## 1. Data Collection: Make Prompt-Image-Mask Pairs
Earlier training scripts have provided approaches like random masking for the training images. This project provides a notebook for more precise mask setting.
The notebook can be found here: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JNEASI_B7pLW1srxhgln6nM0HoGAQT32?usp=sharing)
The `multi_inpaint_dataset.ipynb` notebook, takes training & validation images, on which the user draws masks and provides prompts to make a prompt-image-mask pairs. This ensures that during training, the loss is computed on the area masking the object of interest, rather than on random areas. Moreover, the `multi_inpaint_dataset.ipynb` notebook allows you to build a validation dataset with corresponding masks for monitoring the training process. Example below:
![train_val_pairs](https://drive.google.com/uc?id=1PzwH8E3icl_ubVmA19G0HZGLImFX3x5I)
You can build multiple datasets for every subject and upload them to the 🤗 hub. Later, when launching the training script you can indicate the paths of the datasets, on which you would like to finetune Stable Diffusion for inpaining.
## 2. Train Multi Subject Dreambooth for Inpainting
### 2.1. Setting The Training Configuration
Before launching the training script, make sure to select the inpainting the target model, the output directory and the 🤗 datasets.
```bash
export MODEL_NAME="runwayml/stable-diffusion-inpainting"
export OUTPUT_DIR="path-to-save-model"
export DATASET_1="gzguevara/mr_potato_head_masked"
export DATASET_2="gzguevara/cat_toy_masked"
... # Further paths to 🤗 datasets
```
### 2.2. Launching The Training Script
```bash
accelerate launch train_multi_subject_dreambooth_inpaint.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir $DATASET_1 $DATASET_2 \
--output_dir=$OUTPUT_DIR \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=2 \
--learning_rate=3e-6 \
--max_train_steps=500 \
--report_to_wandb
```
### 2.3. Fine-tune text encoder with the UNet.
The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces.
Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`.
___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___
```bash
accelerate launch train_multi_subject_dreambooth_inpaint.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir $DATASET_1 $DATASET_2 \
--output_dir=$OUTPUT_DIR \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=2 \
--learning_rate=2e-6 \
--max_train_steps=500 \
--report_to_wandb \
--train_text_encoder
```
## 3. Results
A [![Weights & Biases](https://img.shields.io/badge/Weights%20&%20Biases-Report-blue)](https://wandb.ai/gzguevara/uncategorized/reports/Multi-Subject-Dreambooth-for-Inpainting--Vmlldzo2MzY5NDQ4) is provided showing the training progress by every 50 steps. Note, the reported weights & baises run was performed on a A100 GPU with the following stetting:
```bash
accelerate launch train_multi_subject_dreambooth_inpaint.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir $DATASET_1 $DATASET_2 \
--output_dir=$OUTPUT_DIR \
--resolution=512 \
--train_batch_size=10 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-6 \
--max_train_steps=500 \
--report_to_wandb \
--train_text_encoder
```
Here you can see the target objects on my desk and next to my plant:
![Results](https://drive.google.com/uc?id=1kQisOiiF5cj4rOYjdq8SCZenNsUP2aK0)
accelerate>=0.16.0
torchvision
transformers>=4.25.1
datasets>=2.16.0
wandb>=0.16.1
ftfy
tensorboard
Jinja2
\ No newline at end of file
import argparse
import copy
import itertools
import logging
import math
import os
import random
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import concatenate_datasets, load_dataset
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionInpaintPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0.dev0")
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument("--instance_data_dir", nargs="+", help="Instance data directories")
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_text_encoder", default=False, action="store_true", help="Whether to train the text encoder"
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=1000,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint and are suitable for resuming training"
" using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpointing_from",
type=int,
default=1000,
help=("Start to checkpoint from step"),
)
parser.add_argument(
"--validation_steps",
type=int,
default=50,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--validation_from",
type=int,
default=0,
help=("Start to validate from step"),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--validation_project_name",
type=str,
default=None,
help="The w&b name.",
)
parser.add_argument(
"--report_to_wandb", default=False, action="store_true", help="Whether to report to weights and biases"
)
args = parser.parse_args()
return args
def prepare_mask_and_masked_image(image, mask):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
class DreamBoothDataset(Dataset):
def __init__(
self,
tokenizer,
datasets_paths,
):
self.tokenizer = tokenizer
self.datasets_paths = (datasets_paths,)
self.datasets = [load_dataset(dataset_path) for dataset_path in self.datasets_paths[0]]
self.train_data = concatenate_datasets([dataset["train"] for dataset in self.datasets])
self.test_data = concatenate_datasets([dataset["test"] for dataset in self.datasets])
self.image_normalize = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def set_image(self, img, switch):
if img.mode not in ["RGB", "L"]:
img = img.convert("RGB")
if switch:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = img.resize((512, 512), Image.BILINEAR)
return img
def __len__(self):
return len(self.train_data)
def __getitem__(self, index):
# Lettings
example = {}
img_idx = index % len(self.train_data)
switch = random.choice([True, False])
# Load image
image = self.set_image(self.train_data[img_idx]["image"], switch)
# Normalize image
image_norm = self.image_normalize(image)
# Tokenise prompt
tokenized_prompt = self.tokenizer(
self.train_data[img_idx]["prompt"],
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
# Load masks for image
masks = [
self.set_image(self.train_data[img_idx][key], switch) for key in self.train_data[img_idx] if "mask" in key
]
# Build example
example["PIL_image"] = image
example["instance_image"] = image_norm
example["instance_prompt_id"] = tokenized_prompt
example["instance_masks"] = masks
return example
def weighted_mask(masks):
# Convert each mask to a NumPy array and ensure it's binary
mask_arrays = [np.array(mask) / 255 for mask in masks] # Normalizing to 0-1 range
# Generate random weights and apply them to each mask
weights = [random.random() for _ in masks]
weights = [weight / sum(weights) for weight in weights]
weighted_masks = [mask * weight for mask, weight in zip(mask_arrays, weights)]
# Sum the weighted masks
summed_mask = np.sum(weighted_masks, axis=0)
# Apply a threshold to create the final mask
threshold = 0.5 # This threshold can be adjusted
result_mask = summed_mask >= threshold
# Convert the result back to a PIL image
return Image.fromarray(result_mask.astype(np.uint8) * 255)
def collate_fn(examples, tokenizer):
input_ids = [example["instance_prompt_id"] for example in examples]
pixel_values = [example["instance_image"] for example in examples]
masks, masked_images = [], []
for example in examples:
# generate a random mask
mask = weighted_mask(example["instance_masks"])
# prepare mask and masked image
mask, masked_image = prepare_mask_and_masked_image(example["PIL_image"], mask)
masks.append(mask)
masked_images.append(masked_image)
pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float()
masks = torch.stack(masks)
masked_images = torch.stack(masked_images)
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images}
return batch
def log_validation(pipeline, text_encoder, unet, val_pairs, accelerator):
# update pipeline (note: unet and vae are loaded again in float32)
pipeline.text_encoder = accelerator.unwrap_model(text_encoder)
pipeline.unet = accelerator.unwrap_model(unet)
with torch.autocast("cuda"):
val_results = [{"data_or_path": pipeline(**pair).images[0], "caption": pair["prompt"]} for pair in val_pairs]
torch.cuda.empty_cache()
wandb.log({"validation": [wandb.Image(**val_result) for val_result in val_results]})
def checkpoint(args, global_step, accelerator):
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
def main():
args = parse_args()
project_config = ProjectConfiguration(
total_limit=args.checkpoints_total_limit,
project_dir=args.output_dir,
logging_dir=Path(args.output_dir, args.logging_dir),
)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
project_config=project_config,
log_with="wandb" if args.report_to_wandb else None,
)
if args.report_to_wandb and not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
if args.seed is not None:
set_seed(args.seed)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
# Load the tokenizer & models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder"
).requires_grad_(args.train_text_encoder)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae").requires_grad_(False)
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
optimizer = torch.optim.AdamW(
params=itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
tokenizer=tokenizer,
datasets_paths=args.instance_data_dir,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples, tokenizer),
)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
accelerator.register_for_checkpointing(lr_scheduler)
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
weight_dtype = torch.float32
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
# Afterwards we calculate our number of training epochs
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = vars(copy.deepcopy(args))
accelerator.init_trackers(args.validation_project_name, config=tracker_config)
# create validation pipeline (note: unet and vae are loaded again in float32)
val_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
args.pretrained_model_name_or_path,
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
vae=vae,
torch_dtype=weight_dtype,
safety_checker=None,
)
val_pipeline.set_progress_bar_config(disable=True)
# prepare validation dataset
val_pairs = [
{
"image": example["image"],
"mask_image": mask,
"prompt": example["prompt"],
}
for example in train_dataset.test_data
for mask in [example[key] for key in example if "mask" in key]
]
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for model in models:
sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
model.save_pretrained(os.path.join(output_dir, sub_dir))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
accelerator.register_save_state_pre_hook(save_model_hook)
print()
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Convert masked images to latent space
masked_latents = vae.encode(
batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype)
).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
masks = batch["masks"]
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.stack(
[
torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8))
for mask in masks
]
)
mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# concatenate the noised latents with the mask and the masked latents
latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if (
global_step % args.validation_steps == 0
and global_step >= args.validation_from
and args.report_to_wandb
):
log_validation(
val_pipeline,
text_encoder,
unet,
val_pairs,
accelerator,
)
if global_step % args.checkpointing_steps == 0 and global_step >= args.checkpointing_from:
checkpoint(
args,
global_step,
accelerator,
)
# Step logging
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Terminate training
accelerator.end_training()
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment