Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
e4f8dca9
Unverified
Commit
e4f8dca9
authored
May 12, 2024
by
momo
Committed by
GitHub
May 11, 2024
Browse files
add custom sigmas and timesteps for StableDiffusionXLControlNet pipeline (#7913)
add custom sigmas and timesteps
parent
0267c523
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
73 additions
and
2 deletions
+73
-2
src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py
...ffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py
+73
-2
No files found.
src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py
View file @
e4f8dca9
...
@@ -114,6 +114,66 @@ EXAMPLE_DOC_STRING = """
...
@@ -114,6 +114,66 @@ EXAMPLE_DOC_STRING = """
"""
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def
retrieve_timesteps
(
scheduler
,
num_inference_steps
:
Optional
[
int
]
=
None
,
device
:
Optional
[
Union
[
str
,
torch
.
device
]]
=
None
,
timesteps
:
Optional
[
List
[
int
]]
=
None
,
sigmas
:
Optional
[
List
[
float
]]
=
None
,
**
kwargs
,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if
timesteps
is
not
None
and
sigmas
is
not
None
:
raise
ValueError
(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if
timesteps
is
not
None
:
accepts_timesteps
=
"timesteps"
in
set
(
inspect
.
signature
(
scheduler
.
set_timesteps
).
parameters
.
keys
())
if
not
accepts_timesteps
:
raise
ValueError
(
f
"The current scheduler class
{
scheduler
.
__class__
}
's `set_timesteps` does not support custom"
f
" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler
.
set_timesteps
(
timesteps
=
timesteps
,
device
=
device
,
**
kwargs
)
timesteps
=
scheduler
.
timesteps
num_inference_steps
=
len
(
timesteps
)
elif
sigmas
is
not
None
:
accept_sigmas
=
"sigmas"
in
set
(
inspect
.
signature
(
scheduler
.
set_timesteps
).
parameters
.
keys
())
if
not
accept_sigmas
:
raise
ValueError
(
f
"The current scheduler class
{
scheduler
.
__class__
}
's `set_timesteps` does not support custom"
f
" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler
.
set_timesteps
(
sigmas
=
sigmas
,
device
=
device
,
**
kwargs
)
timesteps
=
scheduler
.
timesteps
num_inference_steps
=
len
(
timesteps
)
else
:
scheduler
.
set_timesteps
(
num_inference_steps
,
device
=
device
,
**
kwargs
)
timesteps
=
scheduler
.
timesteps
return
timesteps
,
num_inference_steps
class
StableDiffusionXLControlNetPipeline
(
class
StableDiffusionXLControlNetPipeline
(
DiffusionPipeline
,
DiffusionPipeline
,
StableDiffusionMixin
,
StableDiffusionMixin
,
...
@@ -941,6 +1001,8 @@ class StableDiffusionXLControlNetPipeline(
...
@@ -941,6 +1001,8 @@ class StableDiffusionXLControlNetPipeline(
height
:
Optional
[
int
]
=
None
,
height
:
Optional
[
int
]
=
None
,
width
:
Optional
[
int
]
=
None
,
width
:
Optional
[
int
]
=
None
,
num_inference_steps
:
int
=
50
,
num_inference_steps
:
int
=
50
,
timesteps
:
List
[
int
]
=
None
,
sigmas
:
List
[
float
]
=
None
,
denoising_end
:
Optional
[
float
]
=
None
,
denoising_end
:
Optional
[
float
]
=
None
,
guidance_scale
:
float
=
5.0
,
guidance_scale
:
float
=
5.0
,
negative_prompt
:
Optional
[
Union
[
str
,
List
[
str
]]]
=
None
,
negative_prompt
:
Optional
[
Union
[
str
,
List
[
str
]]]
=
None
,
...
@@ -1001,6 +1063,14 @@ class StableDiffusionXLControlNetPipeline(
...
@@ -1001,6 +1063,14 @@ class StableDiffusionXLControlNetPipeline(
num_inference_steps (`int`, *optional*, defaults to 50):
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
denoising_end (`float`, *optional*):
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
completed before it is intentionally prematurely terminated. As a result, the returned sample will
...
@@ -1265,8 +1335,9 @@ class StableDiffusionXLControlNetPipeline(
...
@@ -1265,8 +1335,9 @@ class StableDiffusionXLControlNetPipeline(
assert
False
assert
False
# 5. Prepare timesteps
# 5. Prepare timesteps
self
.
scheduler
.
set_timesteps
(
num_inference_steps
,
device
=
device
)
timesteps
,
num_inference_steps
=
retrieve_timesteps
(
timesteps
=
self
.
scheduler
.
timesteps
self
.
scheduler
,
num_inference_steps
,
device
,
timesteps
,
sigmas
)
self
.
_num_timesteps
=
len
(
timesteps
)
self
.
_num_timesteps
=
len
(
timesteps
)
# 6. Prepare latent variables
# 6. Prepare latent variables
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment