"vscode:/vscode.git/clone" did not exist on "208fa3683de06712b70a4b4773199cb39cd66523"
Unverified Commit df073ba1 authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[research_projects] add flux training script with quantization (#9754)

* add flux training script with quantization

* remove exclamation
parent 94643fac
## LoRA fine-tuning Flux.1 Dev with quantization
> [!NOTE]
> This example is educational in nature and fixes some arguments to keep things simple. It should act as a reference to build things further.
This example shows how to fine-tune [Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) with LoRA and quantization. We show this by using the [`Norod78/Yarn-art-style`](https://huggingface.co/datasets/Norod78/Yarn-art-style) dataset. Steps below summarize the workflow:
* We precompute the text embeddings in `compute_embeddings.py` and serialize them into a parquet file.
* `train_dreambooth_lora_flux_miniature.py` takes care of training:
* Since we already precomputed the text embeddings, we don't load the text encoders.
* We load the VAE and use it to precompute the image latents and we then delete it.
* Load the Flux transformer, quantize it with the [NF4 datatype](https://arxiv.org/abs/2305.14314) through `bitsandbytes`, prepare it for 4bit training.
* Add LoRA adapter layers to it and then ensure they are kept in FP32 precision.
* Train!
To run training in a memory-optimized manner, we additionally use:
* 8Bit Adam
* Gradient checkpointing
We have tested the scripts on a 24GB 4090. It works on a free-tier Colab Notebook, too, but it's extremely slow.
## Training
Ensure you have installed the required libraries:
```bash
pip install -U transformers accelerate bitsandbytes peft datasets
pip install git+https://github.com/huggingface/diffusers -U
```
Now, compute the text embeddings:
```bash
python compute_embeddings.py
```
It should create a file named `embeddings.parquet`. We're then ready to launch training. First, authenticate so that you can access the Flux.1 Dev model:
```bash
huggingface-cli
```
Then launch:
```bash
accelerate launch --config_file=accelerate.yaml \
train_dreambooth_lora_flux_miniature.py \
--pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \
--data_df_path="embeddings.parquet" \
--output_dir="yarn_art_lora_flux_nf4" \
--mixed_precision="fp16" \
--use_8bit_adam \
--weighting_scheme="none" \
--resolution=1024 \
--train_batch_size=1 \
--repeats=1 \
--learning_rate=1e-4 \
--guidance_scale=1 \
--report_to="wandb" \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--cache_latents \
--rank=4 \
--max_train_steps=700 \
--seed="0"
```
We can direcly pass a quantized checkpoint path, too:
```diff
+ --quantized_model_path="hf-internal-testing/flux.1-dev-nf4-pkg"
```
Depending on the machine, training time will vary but for our case, it was 1.5 hours. It maybe possible to speed this up by using `torch.bfloat16`.
We support training with the DeepSpeed Zero2 optimizer, too. To use it, first install DeepSpeed:
```bash
pip install -Uq deepspeed
```
And then launch:
```bash
accelerate launch --config_file=ds2.yaml \
train_dreambooth_lora_flux_miniature.py \
--pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \
--data_df_path="embeddings.parquet" \
--output_dir="yarn_art_lora_flux_nf4" \
--mixed_precision="no" \
--use_8bit_adam \
--weighting_scheme="none" \
--resolution=1024 \
--train_batch_size=1 \
--repeats=1 \
--learning_rate=1e-4 \
--guidance_scale=1 \
--report_to="wandb" \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--cache_latents \
--rank=4 \
--max_train_steps=700 \
--seed="0"
```
## Inference
When loading the LoRA params (that were obtained on a quantized base model) and merging them into the base model, it is recommended to first dequantize the base model, merge the LoRA params into it, and then quantize the model again. This is because merging into 4bit quantized models can lead to some rounding errors. Below, we provide an end-to-end example:
1. First, load the original model and merge the LoRA params into it:
```py
from diffusers import FluxPipeline
import torch
ckpt_id = "black-forest-labs/FLUX.1-dev"
pipeline = FluxPipeline.from_pretrained(
ckpt_id, text_encoder=None, text_encoder_2=None, torch_dtype=torch.float16
)
pipeline.load_lora_weights("yarn_art_lora_flux_nf4", weight_name="pytorch_lora_weights.safetensors")
pipeline.fuse_lora()
pipeline.unload_lora_weights()
pipeline.transformer.save_pretrained("fused_transformer")
```
2. Quantize the model and run inference
```py
from diffusers import AutoPipelineForText2Image, FluxTransformer2DModel, BitsAndBytesConfig
import torch
ckpt_id = "black-forest-labs/FLUX.1-dev"
bnb_4bit_compute_dtype = torch.float16
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
)
transformer = FluxTransformer2DModel.from_pretrained(
"fused_transformer",
quantization_config=nf4_config,
torch_dtype=bnb_4bit_compute_dtype,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
ckpt_id, transformer=transformer, torch_dtype=bnb_4bit_compute_dtype
)
pipeline.enable_model_cpu_offload()
image = pipeline(
"a puppy in a pond, yarn art style", num_inference_steps=28, guidance_scale=3.5, height=768
).images[0]
image.save("yarn_merged.png")
```
| Dequantize, merge, quantize | Merging directly into quantized model |
|-------|-------|
| ![Image A](https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/quantized_flux_training/merged.png) | ![Image B](https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/quantized_flux_training/unmerged.png) |
As we can notice the first column result follows the style more closely.
\ No newline at end of file
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: NO
downcast_bf16: 'no'
enable_cpu_affinity: true
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import pandas as pd
import torch
from datasets import load_dataset
from huggingface_hub.utils import insecure_hashlib
from tqdm.auto import tqdm
from transformers import T5EncoderModel
from diffusers import FluxPipeline
MAX_SEQ_LENGTH = 77
OUTPUT_PATH = "embeddings.parquet"
def generate_image_hash(image):
return insecure_hashlib.sha256(image.tobytes()).hexdigest()
def load_flux_dev_pipeline():
id = "black-forest-labs/FLUX.1-dev"
text_encoder = T5EncoderModel.from_pretrained(id, subfolder="text_encoder_2", load_in_8bit=True, device_map="auto")
pipeline = FluxPipeline.from_pretrained(
id, text_encoder_2=text_encoder, transformer=None, vae=None, device_map="balanced"
)
return pipeline
@torch.no_grad()
def compute_embeddings(pipeline, prompts, max_sequence_length):
all_prompt_embeds = []
all_pooled_prompt_embeds = []
all_text_ids = []
for prompt in tqdm(prompts, desc="Encoding prompts."):
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = pipeline.encode_prompt(prompt=prompt, prompt_2=None, max_sequence_length=max_sequence_length)
all_prompt_embeds.append(prompt_embeds)
all_pooled_prompt_embeds.append(pooled_prompt_embeds)
all_text_ids.append(text_ids)
max_memory = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
print(f"Max memory allocated: {max_memory:.3f} GB")
return all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids
def run(args):
dataset = load_dataset("Norod78/Yarn-art-style", split="train")
image_prompts = {generate_image_hash(sample["image"]): sample["text"] for sample in dataset}
all_prompts = list(image_prompts.values())
print(f"{len(all_prompts)=}")
pipeline = load_flux_dev_pipeline()
all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids = compute_embeddings(
pipeline, all_prompts, args.max_sequence_length
)
data = []
for i, (image_hash, _) in enumerate(image_prompts.items()):
data.append((image_hash, all_prompt_embeds[i], all_pooled_prompt_embeds[i], all_text_ids[i]))
print(f"{len(data)=}")
# Create a DataFrame
embedding_cols = ["prompt_embeds", "pooled_prompt_embeds", "text_ids"]
df = pd.DataFrame(data, columns=["image_hash"] + embedding_cols)
print(f"{len(df)=}")
# Convert embedding lists to arrays (for proper storage in parquet)
for col in embedding_cols:
df[col] = df[col].apply(lambda x: x.cpu().numpy().flatten().tolist())
# Save the dataframe to a parquet file
df.to_parquet(args.output_path)
print(f"Data successfully serialized to {args.output_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--max_sequence_length",
type=int,
default=MAX_SEQ_LENGTH,
help="Maximum sequence length to use for computing the embeddings. The more the higher computational costs.",
)
parser.add_argument("--output_path", type=str, default=OUTPUT_PATH, help="Path to serialize the parquet file.")
args = parser.parse_args()
run(args)
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
\ No newline at end of file
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import copy
import logging
import math
import os
import random
import shutil
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
from peft import LoraConfig, prepare_model_for_kbit_training, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
import diffusers
from diffusers import (
AutoencoderKL,
BitsAndBytesConfig,
FlowMatchEulerDiscreteScheduler,
FluxPipeline,
FluxTransformer2DModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
free_memory,
)
from diffusers.utils import (
check_min_version,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available():
pass
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
def save_model_card(
repo_id: str,
base_model: str = None,
instance_prompt=None,
repo_folder=None,
quantization_config=None,
):
widget_dict = []
model_description = f"""
# Flux DreamBooth LoRA - {repo_id}
<Gallery />
## Model description
These are {repo_id} DreamBooth LoRA weights for {base_model}.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
Quantization config:
```yaml
{quantization_config}
```
## Trigger words
You should use `{instance_prompt}` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab.
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Usage
TODO
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
"""
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="other",
base_model=base_model,
prompt=instance_prompt,
model_description=model_description,
widget=widget_dict,
)
tags = [
"text-to-image",
"diffusers-training",
"diffusers",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--quantized_model_path",
type=str,
default=None,
help="Path to the quantized model.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--data_df_path",
type=str,
default=None,
help=("Path to the parquet file serialized with compute_embeddings.py."),
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument(
"--max_sequence_length",
type=int,
default=77,
help="Used for reading the embeddings. Needs to be the same as used during `compute_embeddings.py`.",
)
parser.add_argument(
"--rank",
type=int,
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--output_dir",
type=str,
default="flux-dreambooth-lora-nf4",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3.5,
help="the FLUX.1 dev variant is a guidance distilled model",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--weighting_scheme",
type=str,
default="none",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
)
parser.add_argument(
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
parser.add_argument(
"--optimizer",
type=str,
default="AdamW",
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
)
parser.add_argument(
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
)
parser.add_argument(
"--prodigy_beta3",
type=float,
default=None,
help="coefficients for computing the Prodigy stepsize using running averages. If set to None, "
"uses the value of square root of beta2. Ignored if optimizer is adamW",
)
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument(
"--prodigy_use_bias_correction",
type=bool,
default=True,
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
)
parser.add_argument(
"--prodigy_safeguard_warmup",
type=bool,
default=True,
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
"Ignored if optimizer is adamW",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--cache_latents",
action="store_true",
default=False,
help="Cache the VAE latents",
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
class DreamBoothDataset(Dataset):
def __init__(
self,
data_df_path,
dataset_name,
size=1024,
max_sequence_length=77,
center_crop=False,
):
# Logistics
self.size = size
self.center_crop = center_crop
self.max_sequence_length = max_sequence_length
self.data_df_path = Path(data_df_path)
if not self.data_df_path.exists():
raise ValueError("`data_df_path` doesn't exists.")
# Load images.
dataset = load_dataset(dataset_name, split="train")
instance_images = [sample["image"] for sample in dataset]
image_hashes = [self.generate_image_hash(image) for image in instance_images]
self.instance_images = instance_images
self.image_hashes = image_hashes
# Image transformations
self.pixel_values = self.apply_image_transformations(
instance_images=instance_images, size=size, center_crop=center_crop
)
# Map hashes to embeddings.
self.data_dict = self.map_image_hash_embedding(data_df_path=data_df_path)
self.num_instance_images = len(instance_images)
self._length = self.num_instance_images
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = self.pixel_values[index % self.num_instance_images]
image_hash = self.image_hashes[index % self.num_instance_images]
prompt_embeds, pooled_prompt_embeds, text_ids = self.data_dict[image_hash]
example["instance_images"] = instance_image
example["prompt_embeds"] = prompt_embeds
example["pooled_prompt_embeds"] = pooled_prompt_embeds
example["text_ids"] = text_ids
return example
def apply_image_transformations(self, instance_images, size, center_crop):
pixel_values = []
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
for image in instance_images:
image = exif_transpose(image)
if not image.mode == "RGB":
image = image.convert("RGB")
image = train_resize(image)
if args.random_flip and random.random() < 0.5:
# flip
image = train_flip(image)
if args.center_crop:
y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
image = train_crop(image)
else:
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
image = crop(image, y1, x1, h, w)
image = train_transforms(image)
pixel_values.append(image)
return pixel_values
def convert_to_torch_tensor(self, embeddings: list):
prompt_embeds = embeddings[0]
pooled_prompt_embeds = embeddings[1]
text_ids = embeddings[2]
prompt_embeds = np.array(prompt_embeds).reshape(self.max_sequence_length, 4096)
pooled_prompt_embeds = np.array(pooled_prompt_embeds).reshape(768)
text_ids = np.array(text_ids).reshape(77, 3)
return torch.from_numpy(prompt_embeds), torch.from_numpy(pooled_prompt_embeds), torch.from_numpy(text_ids)
def map_image_hash_embedding(self, data_df_path):
hashes_df = pd.read_parquet(data_df_path)
data_dict = {}
for i, row in hashes_df.iterrows():
embeddings = [row["prompt_embeds"], row["pooled_prompt_embeds"], row["text_ids"]]
prompt_embeds, pooled_prompt_embeds, text_ids = self.convert_to_torch_tensor(embeddings=embeddings)
data_dict.update({row["image_hash"]: (prompt_embeds, pooled_prompt_embeds, text_ids)})
return data_dict
def generate_image_hash(self, image):
return insecure_hashlib.sha256(image.tobytes()).hexdigest()
def collate_fn(examples):
pixel_values = [example["instance_images"] for example in examples]
prompt_embeds = [example["prompt_embeds"] for example in examples]
pooled_prompt_embeds = [example["pooled_prompt_embeds"] for example in examples]
text_ids = [example["text_ids"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
prompt_embeds = torch.stack(prompt_embeds)
pooled_prompt_embeds = torch.stack(pooled_prompt_embeds)
text_ids = torch.stack(text_ids)[0] # just 2D tensor
batch = {
"pixel_values": pixel_values,
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
"text_ids": text_ids,
}
return batch
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name,
exist_ok=True,
).repo_id
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
bnb_4bit_compute_dtype = torch.float32
if args.mixed_precision == "fp16":
bnb_4bit_compute_dtype = torch.float16
elif args.mixed_precision == "bf16":
bnb_4bit_compute_dtype = torch.bfloat16
if args.quantized_model_path is not None:
transformer = FluxTransformer2DModel.from_pretrained(
args.quantized_model_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
torch_dtype=bnb_4bit_compute_dtype,
)
else:
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
)
transformer = FluxTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
quantization_config=nf4_config,
torch_dtype=bnb_4bit_compute_dtype,
)
transformer = prepare_model_for_kbit_training(transformer, use_gradient_checkpointing=False)
# We only train the additional adapter LoRA layers
transformer.requires_grad_(False)
vae.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
vae.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# now we will add new LoRA weights to the attention layers
transformer_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
transformer.add_adapter(transformer_lora_config)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
for model in models:
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
model = unwrap_model(model)
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
FluxPipeline.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
text_encoder_lora_layers=None,
)
def load_model_hook(models, input_dir):
transformer_ = None
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
while len(models) > 0:
model = models.pop()
if isinstance(model, type(unwrap_model(transformer))):
transformer_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
else:
if args.quantized_model_path is not None:
transformer_ = FluxTransformer2DModel.from_pretrained(
args.quantized_model_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
torch_dtype=bnb_4bit_compute_dtype,
)
else:
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
)
transformer_ = FluxTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
quantization_config=nf4_config,
torch_dtype=bnb_4bit_compute_dtype,
)
transformer_ = prepare_model_for_kbit_training(transformer_, use_gradient_checkpointing=False)
transformer_.add_adapter(transformer_lora_config)
lora_state_dict = FluxPipeline.lora_state_dict(input_dir)
transformer_state_dict = {
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.")
}
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [transformer_]
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models)
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [transformer]
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models, dtype=torch.float32)
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
# Optimization parameters
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate}
params_to_optimize = [transformer_parameters_with_lr]
# Optimizer creation
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
logger.warning(
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
"Defaulting to adamW"
)
args.optimizer = "adamw"
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
logger.warning(
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
f"set to {args.optimizer.lower()}"
)
if args.optimizer.lower() == "adamw":
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
params_to_optimize,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
if args.optimizer.lower() == "prodigy":
try:
import prodigyopt
except ImportError:
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
optimizer_class = prodigyopt.Prodigy
if args.learning_rate <= 0.1:
logger.warning(
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
)
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
decouple=args.prodigy_decouple,
use_bias_correction=args.prodigy_use_bias_correction,
safeguard_warmup=args.prodigy_safeguard_warmup,
)
# Dataset and DataLoaders creation:
train_dataset = DreamBoothDataset(
data_df_path=args.data_df_path,
dataset_name="Norod78/Yarn-art-style",
size=args.resolution,
max_sequence_length=args.max_sequence_length,
center_crop=args.center_crop,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
vae_config_shift_factor = vae.config.shift_factor
vae_config_scaling_factor = vae.config.scaling_factor
vae_config_block_out_channels = vae.config.block_out_channels
if args.cache_latents:
latents_cache = []
for batch in tqdm(train_dataloader, desc="Caching latents"):
with torch.no_grad():
batch["pixel_values"] = batch["pixel_values"].to(
accelerator.device, non_blocking=True, dtype=weight_dtype
)
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
del vae
free_memory()
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_name = "dreambooth-flux-dev-lora-nf4"
accelerator.init_trackers(tracker_name, config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the mos recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
# Convert images to latent space
if args.cache_latents:
model_input = latents_cache[step].sample()
else:
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor
model_input = model_input.to(dtype=weight_dtype)
vae_scale_factor = 2 ** (len(vae_config_block_out_channels))
latent_image_ids = FluxPipeline._prepare_latent_image_ids(
model_input.shape[0],
model_input.shape[2],
model_input.shape[3],
accelerator.device,
weight_dtype,
)
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
# Add noise according to flow matching.
# zt = (1 - texp) * x + texp * z1
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise
packed_noisy_model_input = FluxPipeline._pack_latents(
noisy_model_input,
batch_size=model_input.shape[0],
num_channels_latents=model_input.shape[1],
height=model_input.shape[2],
width=model_input.shape[3],
)
# handle guidance
if transformer.config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(model_input.shape[0])
else:
guidance = None
# Predict the noise
prompt_embeds = batch["prompt_embeds"].to(device=accelerator.device, dtype=weight_dtype)
pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(device=accelerator.device, dtype=weight_dtype)
text_ids = batch["text_ids"].to(device=accelerator.device, dtype=weight_dtype)
model_pred = transformer(
hidden_states=packed_noisy_model_input,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = FluxPipeline._unpack_latents(
model_pred,
height=int(model_input.shape[2] * vae_scale_factor / 2),
width=int(model_input.shape[3] * vae_scale_factor / 2),
vae_scale_factor=vae_scale_factor,
)
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
# flow matching loss
target = noise - model_input
# Compute regular loss.
loss = torch.mean(
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = transformer.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# Save the lora layers
accelerator.wait_for_everyone()
if accelerator.is_main_process:
transformer = unwrap_model(transformer)
transformer_lora_layers = get_peft_model_state_dict(transformer)
FluxPipeline.save_lora_weights(
save_directory=args.output_dir,
transformer_lora_layers=transformer_lora_layers,
text_encoder_lora_layers=None,
)
if args.push_to_hub:
save_model_card(
repo_id,
base_model=args.pretrained_model_name_or_path,
instance_prompt=None,
repo_folder=args.output_dir,
quantization_config=transformer.config["quantization_config"],
)
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment