"vscode:/vscode.git/clone" did not exist on "9a463332e7d3a0b22dd66fa7a136164add2e67b9"
Unverified Commit db47b1e4 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Dummy imports] Better error message (#795)



* [Dummy imports] Better error message

* Test: load pipeline with LMS scheduler.

Fails with a cryptic message if scipy is not installed.

* Correct
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
parent 966e2fc4
......@@ -49,6 +49,7 @@ if is_transformers_available():
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
logger = logging.get_logger(__name__)
......@@ -467,9 +468,20 @@ class DiffusionPipeline(ConfigMixin):
if issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
load_method = getattr(class_obj, load_method_name)
if load_method_name is None:
none_module = class_obj.__module__
if none_module.startswith(DUMMY_MODULES_FOLDER) and "dummy" in none_module:
# call class_obj for nice error message of missing requirements
class_obj()
raise ValueError(
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
)
load_method = getattr(class_obj, load_method_name)
loading_kwargs = {}
if issubclass(class_obj, torch.nn.Module):
loading_kwargs["torch_dtype"] = torch_dtype
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
......
......@@ -9,3 +9,11 @@ class FlaxStableDiffusionPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax", "transformers"])
......@@ -10,6 +10,14 @@ class FlaxModelMixin(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxUNet2DConditionModel(metaclass=DummyObject):
_backends = ["flax"]
......@@ -17,6 +25,14 @@ class FlaxUNet2DConditionModel(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxAutoencoderKL(metaclass=DummyObject):
_backends = ["flax"]
......@@ -24,6 +40,14 @@ class FlaxAutoencoderKL(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDiffusionPipeline(metaclass=DummyObject):
_backends = ["flax"]
......@@ -31,6 +55,14 @@ class FlaxDiffusionPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDDIMScheduler(metaclass=DummyObject):
_backends = ["flax"]
......@@ -38,6 +70,14 @@ class FlaxDDIMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDDPMScheduler(metaclass=DummyObject):
_backends = ["flax"]
......@@ -45,6 +85,14 @@ class FlaxDDPMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxKarrasVeScheduler(metaclass=DummyObject):
_backends = ["flax"]
......@@ -52,6 +100,14 @@ class FlaxKarrasVeScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxLMSDiscreteScheduler(metaclass=DummyObject):
_backends = ["flax"]
......@@ -59,6 +115,14 @@ class FlaxLMSDiscreteScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxPNDMScheduler(metaclass=DummyObject):
_backends = ["flax"]
......@@ -66,6 +130,14 @@ class FlaxPNDMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxSchedulerMixin(metaclass=DummyObject):
_backends = ["flax"]
......@@ -73,9 +145,25 @@ class FlaxSchedulerMixin(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxScoreSdeVeScheduler(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
......@@ -10,6 +10,14 @@ class ModelMixin(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class AutoencoderKL(metaclass=DummyObject):
_backends = ["torch"]
......@@ -17,6 +25,14 @@ class AutoencoderKL(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class UNet2DConditionModel(metaclass=DummyObject):
_backends = ["torch"]
......@@ -24,6 +40,14 @@ class UNet2DConditionModel(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class UNet2DModel(metaclass=DummyObject):
_backends = ["torch"]
......@@ -31,6 +55,14 @@ class UNet2DModel(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class VQModel(metaclass=DummyObject):
_backends = ["torch"]
......@@ -38,6 +70,14 @@ class VQModel(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
def get_constant_schedule(*args, **kwargs):
requires_backends(get_constant_schedule, ["torch"])
......@@ -73,6 +113,14 @@ class DiffusionPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class DDIMPipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -80,6 +128,14 @@ class DDIMPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class DDPMPipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -87,6 +143,14 @@ class DDPMPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class KarrasVePipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -94,6 +158,14 @@ class KarrasVePipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class LDMPipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -101,6 +173,14 @@ class LDMPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PNDMPipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -108,6 +188,14 @@ class PNDMPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ScoreSdeVePipeline(metaclass=DummyObject):
_backends = ["torch"]
......@@ -115,6 +203,14 @@ class ScoreSdeVePipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class DDIMScheduler(metaclass=DummyObject):
_backends = ["torch"]
......@@ -122,6 +218,14 @@ class DDIMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class DDPMScheduler(metaclass=DummyObject):
_backends = ["torch"]
......@@ -129,6 +233,14 @@ class DDPMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class KarrasVeScheduler(metaclass=DummyObject):
_backends = ["torch"]
......@@ -136,6 +248,14 @@ class KarrasVeScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PNDMScheduler(metaclass=DummyObject):
_backends = ["torch"]
......@@ -143,6 +263,14 @@ class PNDMScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SchedulerMixin(metaclass=DummyObject):
_backends = ["torch"]
......@@ -150,6 +278,14 @@ class SchedulerMixin(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ScoreSdeVeScheduler(metaclass=DummyObject):
_backends = ["torch"]
......@@ -157,9 +293,25 @@ class ScoreSdeVeScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class EMAModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
......@@ -9,3 +9,11 @@ class LMSDiscreteScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "scipy"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "scipy"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "scipy"])
......@@ -9,3 +9,11 @@ class StableDiffusionOnnxPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
......@@ -10,6 +10,14 @@ class LDMTextToImagePipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......@@ -17,6 +25,14 @@ class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......@@ -24,9 +40,25 @@ class StableDiffusionInpaintPipeline(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
......@@ -492,6 +492,12 @@ class PipelineFastTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_from_pretrained_error_message_uninstalled_packages(self):
# TODO(Patrick, Pedro) - need better test here for the future
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-lms-pipe")
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
def test_stable_diffusion_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
......
......@@ -38,6 +38,14 @@ class {0}(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment