Unverified Commit da096a49 authored by Nguyễn Trọng Tuấn's avatar Nguyễn Trọng Tuấn Committed by GitHub
Browse files

Add QwenImage Inpainting and Img2Img pipeline (#12117)



* feat/qwenimage-img2img-inpaint

* Update qwenimage.md to reflect new pipelines and add # Copied from convention

* tiny fix for passing ruff check

* reformat code

* fix copied from statement

* fix copied from statement

* copy and style fix

* fix dummies

---------
Co-authored-by: default avatarTuanNT-ZenAI <tuannt.zenai@gmail.com>
Co-authored-by: default avatarDN6 <dhruv.nair@gmail.com>
parent 480fb357
...@@ -90,3 +90,15 @@ image.save("qwen_fewsteps.png") ...@@ -90,3 +90,15 @@ image.save("qwen_fewsteps.png")
## QwenImagePipelineOutput ## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput [[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput
## QwenImageImg2ImgPipeline
[[autodoc]] QwenImageImg2ImgPipeline
- all
- __call__
## QwenImageInpaintPipeline
[[autodoc]] QwenImageInpaintPipeline
- all
- __call__
...@@ -489,6 +489,8 @@ else: ...@@ -489,6 +489,8 @@ else:
"PixArtAlphaPipeline", "PixArtAlphaPipeline",
"PixArtSigmaPAGPipeline", "PixArtSigmaPAGPipeline",
"PixArtSigmaPipeline", "PixArtSigmaPipeline",
"QwenImageImg2ImgPipeline",
"QwenImageInpaintPipeline",
"QwenImagePipeline", "QwenImagePipeline",
"ReduxImageEncoder", "ReduxImageEncoder",
"SanaControlNetPipeline", "SanaControlNetPipeline",
...@@ -1121,6 +1123,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -1121,6 +1123,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
PixArtAlphaPipeline, PixArtAlphaPipeline,
PixArtSigmaPAGPipeline, PixArtSigmaPAGPipeline,
PixArtSigmaPipeline, PixArtSigmaPipeline,
QwenImageImg2ImgPipeline,
QwenImageInpaintPipeline,
QwenImagePipeline, QwenImagePipeline,
ReduxImageEncoder, ReduxImageEncoder,
SanaControlNetPipeline, SanaControlNetPipeline,
......
...@@ -387,7 +387,11 @@ else: ...@@ -387,7 +387,11 @@ else:
"SkyReelsV2ImageToVideoPipeline", "SkyReelsV2ImageToVideoPipeline",
"SkyReelsV2Pipeline", "SkyReelsV2Pipeline",
] ]
_import_structure["qwenimage"] = ["QwenImagePipeline"] _import_structure["qwenimage"] = [
"QwenImagePipeline",
"QwenImageImg2ImgPipeline",
"QwenImageInpaintPipeline",
]
try: try:
if not is_onnx_available(): if not is_onnx_available():
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()
...@@ -704,7 +708,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -704,7 +708,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .paint_by_example import PaintByExamplePipeline from .paint_by_example import PaintByExamplePipeline
from .pia import PIAPipeline from .pia import PIAPipeline
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
from .qwenimage import QwenImagePipeline from .qwenimage import QwenImageImg2ImgPipeline, QwenImageInpaintPipeline, QwenImagePipeline
from .sana import SanaControlNetPipeline, SanaPipeline, SanaSprintImg2ImgPipeline, SanaSprintPipeline from .sana import SanaControlNetPipeline, SanaPipeline, SanaSprintImg2ImgPipeline, SanaSprintPipeline
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
......
...@@ -24,6 +24,8 @@ except OptionalDependencyNotAvailable: ...@@ -24,6 +24,8 @@ except OptionalDependencyNotAvailable:
else: else:
_import_structure["modeling_qwenimage"] = ["ReduxImageEncoder"] _import_structure["modeling_qwenimage"] = ["ReduxImageEncoder"]
_import_structure["pipeline_qwenimage"] = ["QwenImagePipeline"] _import_structure["pipeline_qwenimage"] = ["QwenImagePipeline"]
_import_structure["pipeline_qwenimage_img2img"] = ["QwenImageImg2ImgPipeline"]
_import_structure["pipeline_qwenimage_inpaint"] = ["QwenImageInpaintPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try: try:
...@@ -33,6 +35,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -33,6 +35,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else: else:
from .pipeline_qwenimage import QwenImagePipeline from .pipeline_qwenimage import QwenImagePipeline
from .pipeline_qwenimage_img2img import QwenImageImg2ImgPipeline
from .pipeline_qwenimage_inpaint import QwenImageInpaintPipeline
else: else:
import sys import sys
......
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import QwenImageLoraLoaderMixin
from ...models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import QwenImagePipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import QwenImageImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> pipe = QwenImageImg2ImgPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)
>>> pipe = pipe.to("cuda")
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> init_image = load_image(url).resize((1024, 1024))
>>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney"
>>> images = pipe(prompt=prompt, negative_prompt=" ", image=init_image, strength=0.95).images[0]
>>> images.save("qwenimage_img2img.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class QwenImageImg2ImgPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
r"""
The QwenImage pipeline for text-to-image generation.
Args:
transformer ([`QwenImageTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
tokenizer (`QwenTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKLQwenImage,
text_encoder: Qwen2_5_VLForConditionalGeneration,
tokenizer: Qwen2Tokenizer,
transformer: QwenImageTransformer2DModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
self.image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.latent_channels
)
self.tokenizer_max_length = 1024
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.prompt_template_encode_start_idx = 34
self.default_sample_size = 128
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
bool_mask = mask.bool()
valid_lengths = bool_mask.sum(dim=1)
selected = hidden_states[bool_mask]
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
return split_result
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._get_qwen_prompt_embeds
def _get_qwen_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
template = self.prompt_template_encode
drop_idx = self.prompt_template_encode_start_idx
txt = [template.format(e) for e in prompt]
txt_tokens = self.tokenizer(
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
).to(device)
encoder_hidden_states = self.text_encoder(
input_ids=txt_tokens.input_ids,
attention_mask=txt_tokens.attention_mask,
output_hidden_states=True,
)
hidden_states = encoder_hidden_states.hidden_states[-1]
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
max_seq_len = max([e.size(0) for e in split_hidden_states])
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
)
encoder_attention_mask = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
return prompt_embeds, encoder_attention_mask
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(image_latents.device, image_latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
image_latents.device, image_latents.dtype
)
image_latents = (image_latents - latents_mean) * latents_std
return image_latents
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
# Copied fromCopied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
max_sequence_length: int = 1024,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
return prompt_embeds, prompt_embeds_mask
def check_inputs(
self,
prompt,
strength,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_embeds_mask=None,
negative_prompt_embeds_mask=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_embeds_mask is None:
raise ValueError(
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 1024:
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._prepare_latent_image_ids
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
return latents
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, 1, num_channels_latents, height, width)
# If image is [B,C,H,W] -> add T=1. If it's already [B,C,T,H,W], leave it.
if image.dim() == 4:
image = image.unsqueeze(2)
elif image.dim() != 5:
raise ValueError(f"Expected image dims 4 or 5, got {image.dim()}.")
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
image = image.to(device=device, dtype=dtype)
if image.shape[1] != self.latent_channels:
image_latents = self._encode_vae_image(image=image, generator=generator) # [B,z,1,H',W']
else:
image_latents = image
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
image_latents = image_latents.transpose(1, 2) # [B,1,z,H',W']
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
true_cfg_scale: float = 4.0,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.6,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
true_cfg_scale (`float`, *optional*, defaults to 1.0):
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 3.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
strength,
height,
width,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Preprocess image
init_image = self.image_processor.preprocess(image, height=height, width=width)
init_image = init_image.to(dtype=torch.float32)
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if do_true_cfg:
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
prompt=negative_prompt,
prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=negative_prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
init_image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if self.attention_kwargs is None:
self._attention_kwargs = {}
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
negative_txt_seq_lens = (
negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
with self.transformer.cache_context("cond"):
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=prompt_embeds_mask,
encoder_hidden_states=prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
if do_true_cfg:
with self.transformer.cache_context("uncond"):
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=negative_prompt_embeds_mask,
encoder_hidden_states=negative_prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=negative_txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
noise_pred = comb_pred * (cond_norm / noise_norm)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return QwenImagePipelineOutput(images=image)
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import QwenImageLoraLoaderMixin
from ...models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import QwenImagePipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import QwenImageInpaintPipeline
>>> from diffusers.utils import load_image
>>> pipe = QwenImageInpaintPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
>>> source = load_image(img_url)
>>> mask = load_image(mask_url)
>>> image = pipe(prompt=prompt, negative_prompt=" ", image=source, mask_image=mask, strength=0.85).images[0]
>>> image.save("qwenimage_inpainting.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class QwenImageInpaintPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
r"""
The QwenImage pipeline for text-to-image generation.
Args:
transformer ([`QwenImageTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
tokenizer (`QwenTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKLQwenImage,
text_encoder: Qwen2_5_VLForConditionalGeneration,
tokenizer: Qwen2Tokenizer,
transformer: QwenImageTransformer2DModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
self.image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.latent_channels
)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor * 2,
vae_latent_channels=self.latent_channels,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
)
self.tokenizer_max_length = 1024
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.prompt_template_encode_start_idx = 34
self.default_sample_size = 128
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
bool_mask = mask.bool()
valid_lengths = bool_mask.sum(dim=1)
selected = hidden_states[bool_mask]
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
return split_result
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._get_qwen_prompt_embeds
def _get_qwen_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
template = self.prompt_template_encode
drop_idx = self.prompt_template_encode_start_idx
txt = [template.format(e) for e in prompt]
txt_tokens = self.tokenizer(
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
).to(device)
encoder_hidden_states = self.text_encoder(
input_ids=txt_tokens.input_ids,
attention_mask=txt_tokens.attention_mask,
output_hidden_states=True,
)
hidden_states = encoder_hidden_states.hidden_states[-1]
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
max_seq_len = max([e.size(0) for e in split_hidden_states])
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
)
encoder_attention_mask = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
return prompt_embeds, encoder_attention_mask
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_img2img.QwenImageImg2ImgPipeline._encode_vae_image
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(image_latents.device, image_latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
image_latents.device, image_latents.dtype
)
image_latents = (image_latents - latents_mean) * latents_std
return image_latents
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
# Copied fromCopied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
max_sequence_length: int = 1024,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
return prompt_embeds, prompt_embeds_mask
def check_inputs(
self,
prompt,
image,
mask_image,
strength,
height,
width,
output_type,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_embeds_mask=None,
negative_prompt_embeds_mask=None,
callback_on_step_end_tensor_inputs=None,
padding_mask_crop=None,
max_sequence_length=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_embeds_mask is None:
raise ValueError(
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if padding_mask_crop is not None:
if not isinstance(image, PIL.Image.Image):
raise ValueError(
f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}."
)
if not isinstance(mask_image, PIL.Image.Image):
raise ValueError(
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
f" {type(mask_image)}."
)
if output_type != "pil":
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.")
if max_sequence_length is not None and max_sequence_length > 1024:
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._prepare_latent_image_ids
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
return latents
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, 1, num_channels_latents, height, width)
# If image is [B,C,H,W] -> add T=1. If it's already [B,C,T,H,W], leave it.
if image.dim() == 4:
image = image.unsqueeze(2)
elif image.dim() != 5:
raise ValueError(f"Expected image dims 4 or 5, got {image.dim()}.")
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
image = image.to(device=device, dtype=dtype)
if image.shape[1] != self.latent_channels:
image_latents = self._encode_vae_image(image=image, generator=generator) # [B,z,1,H',W']
else:
image_latents = image
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
image_latents = image_latents.transpose(1, 2) # [B,1,z,H',W']
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
else:
noise = latents.to(device)
latents = noise
noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, noise, image_latents, latent_image_ids
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
num_channels_latents,
num_images_per_prompt,
height,
width,
dtype,
device,
generator,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(mask, size=(height, width))
mask = mask.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if masked_image.dim() == 4:
masked_image = masked_image.unsqueeze(2)
elif masked_image.dim() != 5:
raise ValueError(f"Expected image dims 4 or 5, got {masked_image.dim()}.")
masked_image = masked_image.to(device=device, dtype=dtype)
if masked_image.shape[1] == self.latent_channels:
masked_image_latents = masked_image
else:
masked_image_latents = self._encode_vae_image(image=masked_image, generator=generator)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1, 1)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
masked_image_latents = self._pack_latents(
masked_image_latents,
batch_size,
num_channels_latents,
height,
width,
)
mask = self._pack_latents(
mask.repeat(1, num_channels_latents, 1, 1),
batch_size,
num_channels_latents,
height,
width,
)
return mask, masked_image_latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
true_cfg_scale: float = 4.0,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
padding_mask_crop: Optional[int] = None,
strength: float = 0.6,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
true_cfg_scale (`float`, *optional*, defaults to 1.0):
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will ge generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
padding_mask_crop (`int`, *optional*, defaults to `None`):
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
with the same aspect ration of the image and contains all masked area, and then expand that area based
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
resizing to the original image size for inpainting. This is useful when the masked area is small while
the image is large and contain information irrelevant for inpainting, such as background.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 3.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
mask_image,
strength,
height,
width,
output_type=output_type,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
padding_mask_crop=padding_mask_crop,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Preprocess image
if padding_mask_crop is not None:
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32)
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if do_true_cfg:
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
prompt=negative_prompt,
prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=negative_prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, noise, image_latents, latent_image_ids = self.prepare_latents(
init_image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
mask_condition = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
if masked_image_latents is None:
masked_image = init_image * (mask_condition < 0.5)
else:
masked_image = masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask_condition,
masked_image,
batch_size,
num_channels_latents,
num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if self.attention_kwargs is None:
self._attention_kwargs = {}
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
negative_txt_seq_lens = (
negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
with self.transformer.cache_context("cond"):
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=prompt_embeds_mask,
encoder_hidden_states=prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
if do_true_cfg:
with self.transformer.cache_context("uncond"):
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=negative_prompt_embeds_mask,
encoder_hidden_states=negative_prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=negative_txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
noise_pred = comb_pred * (cond_norm / noise_norm)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# for 64 channel transformer only.
init_latents_proper = image_latents
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.scale_noise(
init_latents_proper, torch.tensor([noise_timestep]), noise
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
image = self.image_processor.postprocess(image, output_type=output_type)
if padding_mask_crop is not None:
image = [
self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image
]
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return QwenImagePipelineOutput(images=image)
...@@ -1742,6 +1742,36 @@ class PixArtSigmaPipeline(metaclass=DummyObject): ...@@ -1742,6 +1742,36 @@ class PixArtSigmaPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"]) requires_backends(cls, ["torch", "transformers"])
class QwenImageImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class QwenImageInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class QwenImagePipeline(metaclass=DummyObject): class QwenImagePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"] _backends = ["torch", "transformers"]
......
import random
import unittest
import numpy as np
import torch
from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
from diffusers import (
AutoencoderKLQwenImage,
FlowMatchEulerDiscreteScheduler,
QwenImageImg2ImgPipeline,
QwenImageTransformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class QwenImageImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = QwenImageImg2ImgPipeline
params = frozenset(["prompt", "image", "height", "width", "guidance_scale", "true_cfg_scale", "strength"])
batch_params = frozenset(["prompt", "image"])
image_params = frozenset(["image"])
image_latents_params = frozenset(["latents"])
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_attention_slicing = True
test_layerwise_casting = True
test_group_offloading = True
def get_dummy_components(self):
torch.manual_seed(0)
transformer = QwenImageTransformer2DModel(
patch_size=2,
in_channels=16,
out_channels=4,
num_layers=2,
attention_head_dim=16,
num_attention_heads=3,
joint_attention_dim=16,
guidance_embeds=False,
axes_dims_rope=(8, 4, 4),
)
torch.manual_seed(0)
z_dim = 4
vae = AutoencoderKLQwenImage(
base_dim=z_dim * 6,
z_dim=z_dim,
dim_mult=[1, 2, 4],
num_res_blocks=1,
temperal_downsample=[False, True],
latents_mean=[0.0] * 4,
latents_std=[1.0] * 4,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
config = Qwen2_5_VLConfig(
text_config={
"hidden_size": 16,
"intermediate_size": 16,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"num_key_value_heads": 2,
"rope_scaling": {
"mrope_section": [1, 1, 2],
"rope_type": "default",
"type": "default",
},
"rope_theta": 1000000.0,
},
vision_config={
"depth": 2,
"hidden_size": 16,
"intermediate_size": 16,
"num_heads": 2,
"out_hidden_size": 16,
},
hidden_size=16,
vocab_size=152064,
vision_end_token_id=151653,
vision_start_token_id=151652,
vision_token_id=151654,
)
text_encoder = Qwen2_5_VLForConditionalGeneration(config)
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
return {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"image": image,
"prompt": "dance monkey",
"negative_prompt": "bad quality",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.0,
"true_cfg_scale": 1.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
generated_image = image[0]
self.assertEqual(generated_image.shape, (3, 32, 32))
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs).images[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs).images[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs).images[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.2):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_without_tiling = pipe(**inputs)[0]
# With tiling
pipe.vae.enable_tiling(
tile_sample_min_height=96,
tile_sample_min_width=96,
tile_sample_stride_height=64,
tile_sample_stride_width=64,
)
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
from diffusers import (
AutoencoderKLQwenImage,
FlowMatchEulerDiscreteScheduler,
QwenImageInpaintPipeline,
QwenImageTransformer2DModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class QwenImageInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = QwenImageInpaintPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
def get_dummy_components(self):
torch.manual_seed(0)
transformer = QwenImageTransformer2DModel(
patch_size=2,
in_channels=16,
out_channels=4,
num_layers=2,
attention_head_dim=16,
num_attention_heads=3,
joint_attention_dim=16,
guidance_embeds=False,
axes_dims_rope=(8, 4, 4),
)
torch.manual_seed(0)
z_dim = 4
vae = AutoencoderKLQwenImage(
base_dim=z_dim * 6,
z_dim=z_dim,
dim_mult=[1, 2, 4],
num_res_blocks=1,
temperal_downsample=[False, True],
# fmt: off
latents_mean=[0.0] * 4,
latents_std=[1.0] * 4,
# fmt: on
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
config = Qwen2_5_VLConfig(
text_config={
"hidden_size": 16,
"intermediate_size": 16,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"num_key_value_heads": 2,
"rope_scaling": {
"mrope_section": [1, 1, 2],
"rope_type": "default",
"type": "default",
},
"rope_theta": 1000000.0,
},
vision_config={
"depth": 2,
"hidden_size": 16,
"intermediate_size": 16,
"num_heads": 2,
"out_hidden_size": 16,
},
hidden_size=16,
vocab_size=152064,
vision_end_token_id=151653,
vision_start_token_id=151652,
vision_token_id=151654,
)
text_encoder = Qwen2_5_VLForConditionalGeneration(config)
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
mask_image = torch.ones((1, 1, 32, 32)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "dance monkey",
"negative_prompt": "bad quality",
"image": image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.0,
"true_cfg_scale": 1.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
generated_image = image[0]
self.assertEqual(generated_image.shape, (3, 32, 32))
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.2):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_without_tiling = pipe(**inputs)[0]
# With tiling
pipe.vae.enable_tiling(
tile_sample_min_height=96,
tile_sample_min_width=96,
tile_sample_stride_height=64,
tile_sample_stride_width=64,
)
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment