Unverified Commit d37f08da authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Tests] no random latents anymore (#1045)

parent c4ef1efe
......@@ -43,6 +43,7 @@ if is_torch_available():
from .testing_utils import (
floats_tensor,
load_image,
load_numpy,
parse_flag_from_env,
require_torch_gpu,
slow,
......
......@@ -4,11 +4,14 @@ import os
import random
import re
import unittest
import urllib.parse
from distutils.util import strtobool
from io import StringIO
from io import BytesIO, StringIO
from pathlib import Path
from typing import Union
import numpy as np
import PIL.Image
import PIL.ImageOps
import requests
......@@ -165,6 +168,19 @@ def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
return image
def load_numpy(path) -> np.ndarray:
if not path.startswith("http://") or path.startswith("https://"):
path = os.path.join(
"https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main", urllib.parse.quote(path)
)
response = requests.get(path)
response.raise_for_status()
array = np.load(BytesIO(response.content))
return array
# --- pytest conf functions --- #
# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
......
......@@ -21,7 +21,7 @@ import unittest
import torch
from diffusers import UNet2DConditionModel, UNet2DModel
from diffusers.utils import floats_tensor, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils import floats_tensor, load_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from parameterized import parameterized
from ..test_modeling_common import ModelTesterMixin
......@@ -411,6 +411,9 @@ class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
......@@ -418,11 +421,8 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
torch.cuda.empty_cache()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
batch_size, channels, height, width = shape
generator = torch.Generator(device=torch_device).manual_seed(seed)
dtype = torch.float16 if fp16 else torch.float32
image = torch.randn(batch_size, channels, height, width, device=torch_device, generator=generator, dtype=dtype)
image = torch.from_numpy(load_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
......@@ -437,9 +437,9 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
return model
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
generator = torch.Generator(device=torch_device).manual_seed(seed)
dtype = torch.float16 if fp16 else torch.float32
return torch.randn(shape, device=torch_device, generator=generator, dtype=dtype)
hidden_states = torch.from_numpy(load_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return hidden_states
@parameterized.expand(
[
......
......@@ -20,7 +20,7 @@ import torch
from diffusers import AutoencoderKL
from diffusers.modeling_utils import ModelMixin
from diffusers.utils import floats_tensor, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils import floats_tensor, load_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from parameterized import parameterized
from ..test_modeling_common import ModelTesterMixin
......@@ -136,18 +136,18 @@ class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
batch_size, channels, height, width = shape
generator = torch.Generator(device=torch_device).manual_seed(seed)
def get_sd_image(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.randn(batch_size, channels, height, width, device=torch_device, generator=generator, dtype=dtype)
image = torch.from_numpy(load_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment