Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
d1f2e3e4
Commit
d1f2e3e4
authored
Jun 29, 2022
by
Patrick von Platen
Browse files
up
parent
1899457b
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+4
-4
No files found.
src/diffusers/models/resnet.py
View file @
d1f2e3e4
...
@@ -167,8 +167,8 @@ class Downsample(nn.Module):
...
@@ -167,8 +167,8 @@ class Downsample(nn.Module):
# class GlideUpsample(nn.Module):
# class GlideUpsample(nn.Module):
# """
# """
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param
use_conv
:
a
bool
determining
if
a
convolution
is
# applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
#
use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
3
D
,
then
# upsampling occurs in the inner-two dimensions. #"""
#
3D, then # upsampling occurs in the inner-two dimensions. #"""
#
#
# def __init__(self, channels, use_conv, dims=2, out_channels=None):
# def __init__(self, channels, use_conv, dims=2, out_channels=None):
# super().__init__()
# super().__init__()
...
@@ -193,8 +193,8 @@ use_conv: a bool determining if a convolution is # applied. :param dims: determi
...
@@ -193,8 +193,8 @@ use_conv: a bool determining if a convolution is # applied. :param dims: determi
# class LDMUpsample(nn.Module):
# class LDMUpsample(nn.Module):
# """
# """
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param #
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param #
use_conv
:
a
bool
determining
if
a
convolution
is
applied
.
:
param
dims
:
determines
if
the
signal
is
1
D
,
2
D
,
or
3
D
.
# If
#
use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
3
D
,
then
# upsampling occurs in the inner-two dimensions. #"""
#
3D, then # upsampling occurs in the inner-two dimensions. #"""
#
#
# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
# super().__init__()
# super().__init__()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment