Unverified Commit cc436087 authored by Yuta Hayashibe's avatar Yuta Hayashibe Committed by GitHub
Browse files

Fix typos (#978)

parent d7d68414
......@@ -355,7 +355,7 @@ generator = th.Generator("cuda").manual_seed(0)
seed = 0
prompt = "a forest | a camel"
weights = " 1 | 1" # Equal weight to each prompt. Cna be negative
weights = " 1 | 1" # Equal weight to each prompt. Can be negative
images = []
for i in range(4):
......
......@@ -133,7 +133,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
......@@ -264,7 +264,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
......
......@@ -40,7 +40,7 @@ re_attention = re.compile(
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight.
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
......@@ -237,9 +237,9 @@ def get_weighted_text_embeddings(
r"""
Prompts can be assigned with local weights using brackets. For example,
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
and the embedding tokens corresponding to the words get multipled by a constant, 1.1.
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the origional mean.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
Args:
pipe (`DiffusionPipeline`):
......
......@@ -38,7 +38,7 @@ re_attention = re.compile(
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight.
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
......@@ -236,9 +236,9 @@ def get_weighted_text_embeddings(
r"""
Prompts can be assigned with local weights using brackets. For example,
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
and the embedding tokens corresponding to the words get multipled by a constant, 1.1.
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the origional mean.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
Args:
pipe (`DiffusionPipeline`):
......
......@@ -584,7 +584,7 @@ class DiffusionPipeline(ConfigMixin):
def components(self) -> Dict[str, Any]:
r"""
The `self.compenents` property can be useful to run different pipelines with the same weights and
The `self.components` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
......@@ -602,7 +602,7 @@ class DiffusionPipeline(ConfigMixin):
```
Returns:
A dictionaly containing all the modules needed to initialize the pipleline.
A dictionaly containing all the modules needed to initialize the pipeline.
"""
components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
expected_modules = set(inspect.signature(self.__init__).parameters.keys()) - set(["self"])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment