"vscode:/vscode.git/clone" did not exist on "5008fd4e5a6a08636327a2ff25f48102c04850b9"
Unverified Commit c9347206 authored by Steven Liu's avatar Steven Liu Committed by GitHub
Browse files

[docs] Model cards (#11112)

* initial

* update

* hunyuanvideo

* ltx

* fix

* wan

* gen guide

* feedback

* feedback

* pipeline-level quant config

* feedback

* ltx
parent 9f48394b
......@@ -92,8 +92,6 @@
title: API Reference
title: Hybrid Inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/consisid
title: ConsisID
- local: using-diffusers/sdxl
......
......@@ -98,4 +98,8 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin
\ No newline at end of file
[[autodoc]] loaders.lora_base.LoraBaseMixin
## WanLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
\ No newline at end of file
......@@ -13,150 +13,181 @@
# limitations under the License.
-->
# CogVideoX
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://huggingface.co/papers/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
The abstract from the paper is:
*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*
# CogVideoX
<Tip>
[CogVideoX](https://huggingface.co/papers/2408.06072) is a large diffusion transformer model - available in 2B and 5B parameters - designed to generate longer and more consistent videos from text. This model uses a 3D causal variational autoencoder to more efficiently process video data by reducing sequence length (and associated training compute) and preventing flickering in generated videos. An "expert" transformer with adaptive LayerNorm improves alignment between text and video, and 3D full attention helps accurately capture motion and time in generated videos.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
You can find all the original CogVideoX checkpoints under the [CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) collection.
</Tip>
> [!TIP]
> Click on the CogVideoX models in the right sidebar for more examples of other video generation tasks.
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
The example below demonstrates how to generate a video optimized for memory or inference speed.
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
<hfoptions id="usage">
<hfoption id="memory">
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
There are two official CogVideoX checkpoints available for image-to-video.
The quantized CogVideoX 5B model below requires ~16GB of VRAM.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
```py
import torch
from diffusers import CogVideoXPipeline, AutoModel
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
For the CogVideoX 1.5 series:
- Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
- Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
# quantize weights to int8 with torchao
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="torchao",
quant_kwargs={"quant_type": "int8wo"},
components_to_quantize=["transformer"]
)
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
# fp8 layerwise weight-casting
transformer = AutoModel.from_pretrained(
"THUDM/CogVideoX-5b",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
transformer=transformer,
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
# model-offloading
pipeline.enable_model_cpu_offload()
prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse.
Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""
video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
## Inference
</hfoption>
<hfoption id="inference speed">
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
First, load the pipeline:
The average inference time with torch.compile on a 80GB A100 is 76.27 seconds compared to 96.89 seconds for an uncompiled model.
```python
```py
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video,load_image
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b").to("cuda") # or "THUDM/CogVideoX-2b"
```
If you are using the image-to-video pipeline, load it as follows:
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
```python
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
```
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
).to("cuda")
Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
```python
pipe.transformer.to(memory_format=torch.channels_last)
prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse.
Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""
video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
Compile the components and run inference:
</hfoption>
</hfoptions>
```python
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
## Notes
# CogVideoX works well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```
- CogVideoX supports LoRAs with [`~loaders.CogVideoXLoraLoaderMixin.load_lora_weights`].
The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
<details>
<summary>Show example code</summary>
```
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
```
```py
import torch
from diffusers import CogVideoXPipeline
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
### Memory optimization
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
# load LoRA weights
pipeline.load_lora_weights("finetrainers/CogVideoX-1.5-crush-smol-v0", adapter_name="crush-lora")
pipeline.set_adapters("crush-lora", 0.9)
- `pipe.enable_model_cpu_offload()`:
- Without enabling cpu offloading, memory usage is `33 GB`
- With enabling cpu offloading, memory usage is `19 GB`
- `pipe.enable_sequential_cpu_offload()`:
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
- When enabled, memory usage is under `4 GB`
- `pipe.vae.enable_tiling()`:
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
# model-offloading
pipeline.enable_model_cpu_offload()
## Quantization
prompt = """
PIKA_CRUSH A large metal cylinder is seen pressing down on a pile of Oreo cookies, flattening them as if they were under a hydraulic press.
"""
negative_prompt = "inconsistent motion, blurry motion, worse quality, degenerate outputs, deformed outputs"
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=81,
height=480,
width=768,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=16)
```
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`CogVideoXPipeline`] for inference with bitsandbytes.
</details>
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
- The text-to-video (T2V) checkpoints work best with a resolution of 1360x768 because that was the resolution it was pretrained on.
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
- The image-to-video (I2V) checkpoints work with multiple resolutions. The width can vary from 768 to 1360, but the height must be 758. Both height and width must be divisible by 16.
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
- Both T2V and I2V checkpoints work best with 81 and 161 frames. It is recommended to export the generated video at 16fps.
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=8)
```
- Refer to the table below to view memory usage when various memory-saving techniques are enabled.
| method | memory usage (enabled) | memory usage (disabled) |
|---|---|---|
| enable_model_cpu_offload | 19GB | 33GB |
| enable_sequential_cpu_offload | <4GB | ~33GB (very slow inference speed) |
| enable_tiling | 11GB (with enable_model_cpu_offload) | --- |
## CogVideoXPipeline
[[autodoc]] CogVideoXPipeline
......
......@@ -12,78 +12,171 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# HunyuanVideo
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
[HunyuanVideo](https://www.arxiv.org/abs/2412.03603) by Tencent.
# HunyuanVideo
*Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at [this https URL](https://github.com/tencent/HunyuanVideo).*
[HunyuanVideo](https://huggingface.co/papers/2412.03603) is a 13B parameter diffusion transformer model designed to be competitive with closed-source video foundation models and enable wider community access. This model uses a "dual-stream to single-stream" architecture to separately process the video and text tokens first, before concatenating and feeding them to the transformer to fuse the multimodal information. A pretrained multimodal large language model (MLLM) is used as the encoder because it has better image-text alignment, better image detail description and reasoning, and it can be used as a zero-shot learner if system instructions are added to user prompts. Finally, HunyuanVideo uses a 3D causal variational autoencoder to more efficiently process video data at the original resolution and frame rate.
<Tip>
You can find all the original HunyuanVideo checkpoints under the [Tencent](https://huggingface.co/tencent) organization.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
> [!TIP]
> Click on the HunyuanVideo models in the right sidebar for more examples of video generation tasks.
>
> The examples below use a checkpoint from [hunyuanvideo-community](https://huggingface.co/hunyuanvideo-community) because the weights are stored in a layout compatible with Diffusers.
</Tip>
The example below demonstrates how to generate a video optimized for memory or inference speed.
Recommendations for inference:
- Both text encoders should be in `torch.float16`.
- Transformer should be in `torch.bfloat16`.
- VAE should be in `torch.float16`.
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `129`.
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For more information about supported resolutions and other details, please refer to the original repository [here](https://github.com/Tencent/HunyuanVideo/).
<hfoptions id="usage">
<hfoption id="memory">
## Available models
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
The following models are available for the [`HunyuanVideoPipeline`](text-to-video) pipeline:
The quantized HunyuanVideo model below requires ~14GB of VRAM.
| Model name | Description |
|:---|:---|
| [`hunyuanvideo-community/HunyuanVideo`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo) | Official HunyuanVideo (guidance-distilled). Performs best at multiple resolutions and frames. Performs best with `guidance_scale=6.0`, `true_cfg_scale=1.0` and without a negative prompt. |
| [`https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-T2V`](https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-T2V) | Skywork's custom finetune of HunyuanVideo (de-distilled). Performs best with `97x544x960` resolution, `guidance_scale=1.0`, `true_cfg_scale=6.0` and a negative prompt. |
```py
import torch
from diffusers import AutoModel, HunyuanVideoPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import export_to_video
The following models are available for the image-to-video pipeline:
# quantize weights to int4 with bitsandbytes
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16
},
components_to_quantize=["transformer"]
)
| Model name | Description |
|:---|:---|
| [`Skywork/SkyReels-V1-Hunyuan-I2V`](https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-I2V) | Skywork's custom finetune of HunyuanVideo (de-distilled). Performs best with `97x544x960` resolution. Performs best at `97x544x960` resolution, `guidance_scale=1.0`, `true_cfg_scale=6.0` and a negative prompt. |
| [`hunyuanvideo-community/HunyuanVideo-I2V-33ch`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 33-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20). |
| [`hunyuanvideo-community/HunyuanVideo-I2V`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 16-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20) |
pipeline = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
)
## Quantization
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
prompt = "A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
</hfoption>
<hfoption id="inference speed">
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`HunyuanVideoPipeline`] for inference with bitsandbytes.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
from diffusers import AutoModel, HunyuanVideoPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import export_to_video
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = HunyuanVideoTransformer3DModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
# quantize weights to int4 with bitsandbytes
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16
},
components_to_quantize=["transformer"]
)
pipeline = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
)
prompt = "A cat walks on the grass, realistic style."
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
prompt = "A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "cat.mp4", fps=15)
export_to_video(video, "output.mp4", fps=15)
```
</hfoption>
</hfoptions>
## Notes
- HunyuanVideo supports LoRAs with [`~loaders.HunyuanVideoLoraLoaderMixin.load_lora_weights`].
<details>
<summary>Show example code</summary>
```py
import torch
from diffusers import AutoModel, HunyuanVideoPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import export_to_video
# quantize weights to int4 with bitsandbytes
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16
},
components_to_quantize=["transformer"]
)
pipeline = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
)
# load LoRA weights
pipeline.load_lora_weights("https://huggingface.co/lucataco/hunyuan-steamboat-willie-10", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie", 0.9)
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
# use "In the style of SWR" to trigger the LoRA
prompt = """
In the style of SWR. A black and white animated scene featuring a fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys.
"""
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
</details>
- Refer to the table below for recommended inference values.
| parameter | recommended value |
|---|---|
| text encoder dtype | `torch.float16` |
| transformer dtype | `torch.bfloat16` |
| vae dtype | `torch.float16` |
| `num_frames (k)` | 4 * `k` + 1 |
- Try lower `shift` values (`2.0` to `5.0`) for lower resolution videos and higher `shift` values (`7.0` to `12.0`) for higher resolution images.
## HunyuanVideoPipeline
[[autodoc]] HunyuanVideoPipeline
......
......@@ -12,322 +12,108 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# LTX Video
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
</div>
</div>
[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Available models:
| Model name | Recommended dtype |
|:-------------:|:-----------------:|
| [`LTX Video 2B 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
| [`LTX Video 2B 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
| [`LTX Video 2B 0.9.5`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.5.safetensors) | `torch.bfloat16` |
| [`LTX Video 13B 0.9.7`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.safetensors) | `torch.bfloat16` |
| [`LTX Video 13B 0.9.7 (distilled)`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) | `torch.bfloat16` |
| [`LTX Video Spatial Upscaler 0.9.7`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-spatial-upscaler-0.9.7.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
## Recommended settings for generation
For the best results, it is recommended to follow the guidelines mentioned in the official LTX Video [repository](https://github.com/Lightricks/LTX-Video).
- Some variants of LTX Video are guidance-distilled. For guidance-distilled models, `guidance_scale` must be set to `1.0`. For any other models, `guidance_scale` should be set higher (e.g., `5.0`) for good generation quality.
- For variants with a timestep-aware VAE (LTXV 0.9.1 and above), it is recommended to set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
- For variants that support interpolation between multiple conditioning images and videos (LTXV 0.9.5 and above), it is recommended to use similar looking images/videos for the best results. High divergence between the conditionings may lead to abrupt transitions in the generated video.
<!-- TODO(aryan): remove this warning when modular diffusers is ready -->
<Tip warning={true}>
The examples below show some recommended generation settings, but note that all features supported in the original [LTX Video repository](https://github.com/Lightricks/LTX-Video) are not supported in `diffusers` yet (for example, Spatio-temporal Guidance and CRF compression for image inputs). This will gradually be supported in the future. For the best possible generation quality, we recommend using the code from the original repository.
</Tip>
## Using LTX Video 13B 0.9.7
LTX Video 0.9.7 comes with a spatial latent upscaler and a 13B parameter transformer. The inference involves generating a low resolution video first, which is very fast, followed by upscaling and refining the generated video.
<!-- TODO(aryan): modify when official checkpoints are available -->
```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_temporal_compression_ratio)
width = width - (width % pipe.vae_temporal_compression_ratio)
return height, width
video = load_video(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
)[:21] # Use only the first 21 frames as conditioning
condition1 = LTXVideoCondition(video=video, frame_index=0)
prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
num_frames = 161
# Part 1. Generate video at smaller resolution
# Text-only conditioning is also supported without the need to pass `conditions`
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipe(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=30,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipe(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# Part 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
## Using LTX Video 0.9.7 (distilled)
The same example as above can be used with the exception of the `guidance_scale` parameter. The model is both guidance and timestep distilled in order to speedup generation. It requires `guidance_scale` to be set to `1.0`. Additionally, to benefit from the timestep distillation, `num_inference_steps` can be set between `4` and `10` for good generation quality.
Additionally, custom timesteps can also be used for conditioning the generation. The authors recommend using the following timesteps for best results:
- Base model inference to prepare for upscaling: `[1000, 993, 987, 981, 975, 909, 725, 0.03]`
- Upscaling: `[1000, 909, 725, 421, 0]`
<details>
<summary> Full example </summary>
```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_temporal_compression_ratio)
width = width - (width % pipe.vae_temporal_compression_ratio)
return height, width
prompt = "artistic anatomical 3d render, utlra quality, human half full male body with transparent skin revealing structure instead of organs, muscular, intricate creative patterns, monochromatic with backlighting, lightning mesh, scientific concept art, blending biology with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic, 16K UHD, rich details. camera zooms out in a rotating fashion"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
num_frames = 161
# Part 1. Generate video at smaller resolution
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
adain_factor=1.0,
output_type="latent"
).frames
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999, # Effectively, 4 inference steps out of 5
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# Part 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
</details>
## Loading Single Files
# LTX-Video
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`]. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.
[LTX-Video](https://huggingface.co/Lightricks/LTX-Video) is a diffusion transformer designed for fast and real-time generation of high-resolution videos from text and images. The main feature of LTX-Video is the Video-VAE. The Video-VAE has a higher pixel to latent compression ratio (1:192) which enables more efficient video data processing and faster generation speed. To support and prevent finer details from being lost during generation, the Video-VAE decoder performs the latent to pixel conversion *and* the last denoising step.
```python
import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
# `single_file_url` could also be https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(
single_file_url, torch_dtype=torch.bfloat16
)
vae = AutoencoderKLLTXVideo.from_single_file(single_file_url, torch_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from_pretrained(
"Lightricks/LTX-Video", transformer=transformer, vae=vae, torch_dtype=torch.bfloat16
)
You can find all the original LTX-Video checkpoints under the [Lightricks](https://huggingface.co/Lightricks) organization.
# ... inference code ...
```
> [!TIP]
> Click on the LTX-Video models in the right sidebar for more examples of other video generation tasks.
Alternatively, the pipeline can be used to load the weights with [`~FromSingleFileMixin.from_single_file`].
The example below demonstrates how to generate a video optimized for memory or inference speed.
```python
import torch
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
<hfoptions id="usage">
<hfoption id="memory">
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
text_encoder = T5EncoderModel.from_pretrained(
"Lightricks/LTX-Video", subfolder="text_encoder", torch_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from_pretrained(
"Lightricks/LTX-Video", subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from_single_file(
single_file_url, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=torch.bfloat16
)
```
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
Loading [LTX GGUF checkpoints](https://huggingface.co/city96/LTX-Video-gguf) are also supported:
The LTX-Video model below requires ~10GB of VRAM.
```py
import torch
from diffusers import LTXPipeline, AutoModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
from diffusers import LTXPipeline, LTXVideoTransformer3DModel, GGUFQuantizationConfig
ckpt_path = (
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
)
transformer = LTXVideoTransformer3DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipe = LTXPipeline.from_pretrained(
# fp8 layerwise weight-casting
transformer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch_dtype=torch.bfloat16,
subfolder="transformer",
torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
pipeline = LTXPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
pipeline.transformer.enable_group_offload(onload_device=onload_device, offload_device=offload_device, offload_type="leaf_level", use_stream=True)
apply_group_offloading(pipeline.text_encoder, onload_device=onload_device, offload_type="block_level", num_blocks_per_group=2)
apply_group_offloading(pipeline.vae, onload_device=onload_device, offload_type="leaf_level")
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=704,
height=480,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output_gguf_ltx.mp4", fps=24)
export_to_video(video, "output.mp4", fps=24)
```
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
<!-- TODO(aryan): Update this when official weights are supported -->
</hfoption>
<hfoption id="inference speed">
Loading and running inference with [LTX Video 0.9.1](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) weights.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
```python
```py
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video", torch_dtype=torch.bfloat16
)
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
......@@ -340,48 +126,264 @@ video = pipe(
export_to_video(video, "output.mp4", fps=24)
```
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LTXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LTXVideoTransformer3DModel, LTXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = LTXVideoTransformer3DModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, num_frames=161, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=24)
```
</hfoption>
</hfoptions>
## Notes
- Refer to the following recommended settings for generation from the [LTX-Video](https://github.com/Lightricks/LTX-Video) repository.
- The recommended dtype for the transformer, VAE, and text encoder is `torch.bfloat16`. The VAE and text encoder can also be `torch.float32` or `torch.float16`.
- For guidance-distilled variants of LTX-Video, set `guidance_scale` to `1.0`. The `guidance_scale` for any other model should be set higher, like `5.0`, for good generation quality.
- For timestep-aware VAE variants (LTX-Video 0.9.1 and above), set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
- For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitionts in the generated video.
- LTX-Video 0.9.7 includes a spatial latent upscaler and a 13B parameter transformer. During inference, a low resolution video is quickly generated first and then upscaled and refined.
<details>
<summary>Show example code</summary>
```py
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
pipeline_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16)
pipeline.to("cuda")
pipe_upsample.to("cuda")
pipeline.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipeline.vae_temporal_compression_ratio)
width = width - (width % pipeline.vae_temporal_compression_ratio)
return height, width
video = load_video(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
)[:21] # only use the first 21 frames as conditioning
condition1 = LTXVideoCondition(video=video, frame_index=0)
prompt = """
The video depicts a winding mountain road covered in snow, with a single vehicle
traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation.
The landscape is characterized by rugged terrain and a river visible in the distance.
The scene captures the solitude and beauty of a winter drive through a mountainous region.
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
num_frames = 161
# 1. Generate video at smaller resolution
# Text-only conditioning is also supported without the need to pass `conditions`
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipeline(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=30,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
# 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipeline(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
</details>
- LTX-Video 0.9.7 distilled model is guidance and timestep-distilled to speedup generation. It requires `guidance_scale` to be set to `1.0` and `num_inference_steps` should be set between `4` and `10` for good generation quality. You should also use the following custom timesteps for the best results.
- Base model inference to prepare for upscaling: `[1000, 993, 987, 981, 975, 909, 725, 0.03]`.
- Upscaling: `[1000, 909, 725, 421, 0]`.
<details>
<summary>Show example code</summary>
```py
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16)
pipeline.to("cuda")
pipe_upsample.to("cuda")
pipeline.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipeline.vae_temporal_compression_ratio)
width = width - (width % pipeline.vae_temporal_compression_ratio)
return height, width
prompt = """
artistic anatomical 3d render, utlra quality, human half full male body with transparent
skin revealing structure instead of organs, muscular, intricate creative patterns,
monochromatic with backlighting, lightning mesh, scientific concept art, blending biology
with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic,
16K UHD, rich details. camera zooms out in a rotating fashion
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
num_frames = 161
# 1. Generate video at smaller resolution
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
adain_factor=1.0,
output_type="latent"
).frames
# 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999, # Effectively, 4 inference steps out of 5
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
</details>
- LTX-Video supports LoRAs with [`~loaders.LTXVideoLoraLoaderMixin.load_lora_weights`].
<details>
<summary>Show example code</summary>
```py
import torch
from diffusers import LTXConditionPipeline
from diffusers.utils import export_to_video, load_image
pipeline = LTXConditionPipeline.from_pretrained(
"Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16
)
pipeline.load_lora_weights("Lightricks/LTX-Video-Cakeify-LoRA", adapter_name="cakeify")
pipeline.set_adapters("cakeify")
# use "CAKEIFY" to trigger the LoRA
prompt = "CAKEIFY a person using a knife to cut a cake shaped like a Pikachu plushie"
image = load_image("https://huggingface.co/Lightricks/LTX-Video-Cakeify-LoRA/resolve/main/assets/images/pikachu.png")
video = pipeline(
prompt=prompt,
image=image,
width=576,
height=576,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=26)
```
</details>
- LTX-Video supports loading from single files, such as [GGUF checkpoints](../../quantization/gguf), with [`loaders.FromOriginalModelMixin.from_single_file`] or [`loaders.FromSingleFileMixin.from_single_file`].
<details>
<summary>Show example code</summary>
```py
import torch
from diffusers.utils import export_to_video
from diffusers import LTXPipeline, AutoModel, GGUFQuantizationConfig
transformer = AutoModel.from_single_file(
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16
)
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch_dtype=torch.bfloat16
)
```
</details>
## LTXPipeline
......
......@@ -12,495 +12,232 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# Wan
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
[Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
<!-- TODO(aryan): update abstract once paper is out -->
## Generating Videos with Wan 2.1
We will first need to install some additional dependencies.
```shell
pip install -u ftfy imageio-ffmpeg imageio
```
### Text to Video Generation
The following example requires 11GB VRAM to run and uses the smaller `Wan-AI/Wan2.1-T2V-1.3B-Diffusers` model. You can switch it out
for the larger `Wan2.1-I2V-14B-720P-Diffusers` or `Wan-AI/Wan2.1-I2V-14B-480P-Diffusers` if you have at least 35GB VRAM available.
# Wan2.1
```python
from diffusers import WanPipeline
from diffusers.utils import export_to_video
[Wan2.1](https://files.alicdn.com/tpsservice/5c9de1c74de03972b7aa657e5a54756b.pdf) is a series of large diffusion transformer available in two versions, a high-performance 14B parameter model and a more accessible 1.3B version. Trained on billions of images and videos, it supports tasks like text-to-video (T2V) and image-to-video (I2V) while enabling features such as camera control and stylistic diversity. The Wan-VAE features better image data compression and a feature cache mechanism that encodes and decodes a video in chunks. To maintain continuity, features from previous chunks are cached and reused for processing subsequent chunks. This improves inference efficiency by reducing memory usage. Wan2.1 also uses a multilingual text encoder and the diffusion transformer models space and time relationships and text conditions with each time step to capture more complex video dynamics.
# Available models: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers or Wan-AI/Wan2.1-I2V-14B-480P-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
You can find all the original Wan2.1 checkpoints under the [Wan-AI](https://huggingface.co/Wan-AI) organization.
pipe = WanPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
> [!TIP]
> Click on the Wan2.1 models in the right sidebar for more examples of video generation.
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
frames = pipe(prompt=prompt, negative_prompt=negative_prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```
The example below demonstrates how to generate a video from text optimized for memory or inference speed.
<Tip>
You can improve the quality of the generated video by running the decoding step in full precision.
</Tip>
<hfoptions id="usage">
<hfoption id="memory">
```python
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
The Wan2.1 text-to-video model below requires ~13GB of VRAM.
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
frames = pipe(prompt=prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```
### Image to Video Generation
The Image to Video pipeline requires loading the `AutoencoderKLWan` and the `CLIPVisionModel` components in full precision. The following example will need at least
35GB of VRAM to run.
```python
```py
# pip install ftfy
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 480 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
### First and Last Frame Interpolation
```python
import numpy as np
import torch
import torchvision.transforms.functional as TF
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
model_id = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.to("cuda")
first_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png")
last_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png")
def aspect_ratio_resize(image, pipe, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
def center_crop_resize(image, height, width):
# Calculate resize ratio to match first frame dimensions
resize_ratio = max(width / image.width, height / image.height)
# Resize the image
width = round(image.width * resize_ratio)
height = round(image.height * resize_ratio)
size = [width, height]
image = TF.center_crop(image, size)
return image, height, width
first_frame, height, width = aspect_ratio_resize(first_frame, pipe)
if last_frame.size != first_frame.size:
last_frame, _, _ = center_crop_resize(last_frame, height, width)
prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
output = pipe(
image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.5
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
### Video to Video Generation
```python
import torch
from diffusers.utils import load_video, export_to_video
from diffusers import AutoencoderKLWan, WanVideoToVideoPipeline, UniPCMultistepScheduler
# Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(
model_id, subfolder="vae", torch_dtype=torch.float32
)
pipe = WanVideoToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=flow_shift
)
# change to pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
prompt = "A robot standing on a mountain top. The sun is setting in the background"
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
video = load_video(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
)
output = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=512,
guidance_scale=7.0,
strength=0.7,
).frames[0]
export_to_video(output, "wan-v2v.mp4", fps=16)
```
## Memory Optimizations for Wan 2.1
Base inference with the large 14B Wan 2.1 models can take up to 35GB of VRAM when generating videos at 720p resolution. We'll outline a few memory optimizations we can apply to reduce the VRAM required to run the model.
We'll use `Wan-AI/Wan2.1-I2V-14B-720P-Diffusers` model in these examples to demonstrate the memory savings, but the techniques are applicable to all model checkpoints.
### Group Offloading the Transformer and UMT5 Text Encoder
Find more information about group offloading [here](../optimization/memory.md)
#### Block Level Group Offloading
We can reduce our VRAM requirements by applying group offloading to the larger model components of the pipeline; the `WanTransformer3DModel` and `UMT5EncoderModel`. Group offloading will break up the individual modules of a model and offload/onload them onto your GPU as needed during inference. In this example, we'll apply `block_level` offloading, which will group the modules in a model into blocks of size `num_blocks_per_group` and offload/onload them to GPU. Moving to between CPU and GPU does add latency to the inference process. You can trade off between latency and memory savings by increasing or decreasing the `num_blocks_per_group`.
The following example will now only require 14GB of VRAM to run, but will take approximately 30 minutes to generate a video.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers import AutoModel, WanPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
from transformers import UMT5EncoderModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4,
)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models already, we can move the rest of the model components to GPU
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
#### Block Level Group Offloading with CUDA Streams
We can speed up group offloading inference, by enabling the use of [CUDA streams](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html). However, using CUDA streams requires moving the model parameters into pinned memory. This allocation is handled by Pytorch under the hood, and can result in a significant spike in CPU RAM usage. Please consider this option if your CPU RAM is atleast 2X the size of the model you are group offloading.
In the following example we will use CUDA streams when group offloading the `WanTransformer3DModel`. When testing on an A100, this example will require 14GB of VRAM, 52GB of CPU RAM, but will generate a video in approximately 9 minutes.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models already, we can move the rest of the model components to GPU
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
pipeline.to("cuda")
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
export_to_video(output, "output.mp4", fps=16)
```
### Applying Layerwise Casting to the Transformer
Find more information about layerwise casting [here](../optimization/memory.md)
In this example, we will model offloading with layerwise casting. Layerwise casting will downcast each layer's weights to `torch.float8_e4m3fn`, temporarily upcast to `torch.bfloat16` during the forward pass of the layer, then revert to `torch.float8_e4m3fn` afterward. This approach reduces memory requirements by approximately 50% while introducing a minor quality reduction in the generated video due to the precision trade-off.
</hfoption>
<hfoption id="inference speed">
This example will require 20GB of VRAM.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
```python
```py
# pip install ftfy
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers import AutoModel, WanPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
from transformers import UMT5EncoderModel
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg")
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
pipeline.to("cuda")
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=50,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
## Using a Custom Scheduler
Wan can be used with many different schedulers, each with their own benefits regarding speed and generation quality. By default, Wan uses the `UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)` scheduler. You can use a different scheduler as follows:
```python
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler, WanPipeline
scheduler_a = FlowMatchEulerDiscreteScheduler(shift=5.0)
scheduler_b = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=4.0)
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", scheduler=<CUSTOM_SCHEDULER_HERE>)
# or,
pipe.scheduler = <CUSTOM_SCHEDULER_HERE>
```
## Using Single File Loading with Wan 2.1
The `WanTransformer3DModel` and `AutoencoderKLWan` models support loading checkpoints in their original format via the `from_single_file` loading
method.
```python
import torch
from diffusers import WanPipeline, WanTransformer3DModel
ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors"
transformer = WanTransformer3DModel.from_single_file(ckpt_path, torch_dtype=torch.bfloat16)
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", transformer=transformer)
export_to_video(output, "output.mp4", fps=16)
```
## Recommendations for Inference
- Keep `AutencoderKLWan` in `torch.float32` for better decoding quality.
- `num_frames` should satisfy the following constraint: `(num_frames - 1) % 4 == 0`
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.
</hfoption>
</hfoptions>
## Notes
- Wan2.1 supports LoRAs with [`~loaders.WanLoraLoaderMixin.load_lora_weights`].
<details>
<summary>Show example code</summary>
```py
# pip install ftfy
import torch
from diffusers import AutoModel, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.utils import export_to_video
vae = AutoModel.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", vae=vae, torch_dtype=torch.bfloat16
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(
pipeline.scheduler.config, flow_shift=5.0
)
pipeline.to("cuda")
pipeline.load_lora_weights("benjamin-paine/steamboat-willie-1.3b", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie")
pipeline.enable_model_cpu_offload()
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
output = pipeline(
prompt=prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
</details>
- [`WanTransformer3DModel`] and [`AutoencoderKLWan`] supports loading from single files with [`~loaders.FromSingleFileMixin.from_single_file`].
<details>
<summary>Show example code</summary>
```py
# pip install ftfy
import torch
from diffusers import WanPipeline, AutoModel
vae = AutoModel.from_single_file(
"https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors"
)
transformer = AutoModel.from_single_file(
"https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors",
torch_dtype=torch.bfloat16
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
vae=vae,
transformer=transformer,
torch_dtype=torch.bfloat16
)
```
</details>
- Set the [`AutoencoderKLWan`] dtype to `torch.float32` for better decoding quality.
- The number of frames per second (fps) or `k` should be calculated by `4 * k + 1`.
- Try lower `shift` values (`2.0` to `5.0`) for lower resolution videos and higher `shift` values (`7.0` to `12.0`) for higher resolution images.
## WanPipeline
......@@ -516,4 +253,4 @@ pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", transform
## WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput
\ No newline at end of file
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoX
CogVideoX is a text-to-video generation model focused on creating more coherent videos aligned with a prompt. It achieves this using several methods.
- a 3D variational autoencoder that compresses videos spatially and temporally, improving compression rate and video accuracy.
- an expert transformer block to help align text and video, and a 3D full attention module for capturing and creating spatially and temporally accurate videos.
## Load model checkpoints
Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method.
```py
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
)
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
```
## Text-to-Video
For text-to-video, pass a text prompt. By default, CogVideoX generates a 720x480 video for the best results.
```py
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_out.gif" alt="generated image of an astronaut in a jungle"/>
</div>
## Image-to-Video
You'll use the [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V) checkpoint for this guide.
```py
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
video = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_outrocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
......@@ -12,551 +12,436 @@ specific language governing permissions and limitations under the License.
# Video generation
Video generation models include a temporal dimension to bring images, or frames, together to create a video. These models are trained on large-scale datasets of high-quality text-video pairs to learn how to combine the modalities to ensure the generated video is coherent and realistic.
Video generation models extend image generation (can be considered a 1-frame video) to also process data related to space and time. Making sure all this data - text, space, time - remain consistent and aligned from frame-to-frame is a big challenge in generating long and high-resolution videos.
[Explore](https://huggingface.co/models?other=video-generation) some of the more popular open-source video generation models available from Diffusers below.
Modern video models tackle this challenge with the diffusion transformer (DiT) architecture. This reduces computational costs and allows more efficient scaling to larger and higher-quality image and video data.
<hfoptions id="popular-models">
<hfoption id="CogVideoX">
Check out what some of these video models are capable of below.
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) uses a 3D causal Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions, and it includes a stack of expert transformer blocks with a 3D full attention mechanism to better capture visual, semantic, and motion information in the data.
The CogVideoX family also includes models capable of generating videos from images and videos in addition to text. The image-to-video models are indicated by **I2V** in the checkpoint name, and they should be used with the [`CogVideoXImageToVideoPipeline`]. The regular checkpoints support video-to-video through the [`CogVideoXVideoToVideoPipeline`].
The example below demonstrates how to generate a video from an image and text prompt with [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V).
<hfoptions id="popular models">
<hfoption id="Wan2.1">
```py
# pip install ftfy
import torch
from diffusers import CogVideoXImageToVideoPipeline
import numpy as np
from diffusers import AutoModel, WanPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True
)
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
video = pipe(
output = pipeline(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
negative_prompt=negative_prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(video, "output.mp4", fps=8)
export_to_video(output, "output.mp4", fps=16)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_outrocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
</hfoption>
<hfoption id="HunyuanVideo">
> [!TIP]
> HunyuanVideo is a 13B parameter model and requires a lot of memory. Refer to the HunyuanVideo [Quantization](../api/pipelines/hunyuan_video#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
[HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) features a dual-stream to single-stream diffusion transformer (DiT) for learning video and text tokens separately, and then subsequently concatenating the video and text tokens to combine their information. A single multimodal large language model (MLLM) serves as the text encoder, and videos are also spatio-temporally compressed with a 3D causal VAE.
```py
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers importAutoModel, HunyuanVideoPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import export_to_video
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16
# quantize weights to int4 with bitsandbytes
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16
},
components_to_quantize=["transformer"]
)
pipe = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", transformer=transformer, torch_dtype=torch.float16
pipeline = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
)
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.to("cuda")
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
video = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
).frames[0]
prompt = "A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hunyuan-video-output.gif"/>
</div>
</hfoption>
<hfoption id="LTX-Video">
[LTX-Video (LTXV)](https://huggingface.co/Lightricks/LTX-Video) is a diffusion transformer (DiT) with a focus on speed. It generates 768x512 resolution videos at 24 frames per second (fps), enabling near real-time generation of high-quality videos. LTXV is relatively lightweight compared to other modern video generation models, making it possible to run on consumer GPUs.
```py
import torch
from diffusers import LTXPipeline
from diffusers import LTXPipeline, AutoModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16).to("cuda")
# fp8 layerwise weight-casting
transformer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
pipeline = LTXPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, torch_dtype=torch.bfloat16)
prompt = "A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage."
video = pipe(
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
pipeline.transformer.enable_group_offload(onload_device=onload_device, offload_device=offload_device, offload_type="leaf_level", use_stream=True)
apply_group_offloading(pipeline.text_encoder, onload_device=onload_device, offload_type="block_level", num_blocks_per_group=2)
apply_group_offloading(pipeline.vae, onload_device=onload_device, offload_type="leaf_level")
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipeline(
prompt=prompt,
width=704,
height=480,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
<div class="flex justify-center">
<img src="https://huggingface.co/Lightricks/LTX-Video/resolve/main/media/ltx-video_example_00014.gif"/>
</div>
</hfoption>
<hfoption id="Mochi-1">
> [!TIP]
> Mochi-1 is a 10B parameter model and requires a lot of memory. Refer to the Mochi [Quantization](../api/pipelines/mochi#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
[Mochi-1](https://huggingface.co/genmo/mochi-1-preview) introduces the Asymmetric Diffusion Transformer (AsymmDiT) and Asymmetric Variational Autoencoder (AsymmVAE) to reduces memory requirements. AsymmVAE causally compresses videos 128x to improve memory efficiency, and AsymmDiT jointly attends to the compressed video tokens and user text tokens. This model is noted for generating videos with high-quality motion dynamics and strong prompt adherence.
</hfoptions>
```py
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
This guide will cover video generation basics such as which parameters to configure and how to reduce their memory usage.
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
> [!TIP]
> If you're interested in learning more about how to use a specific model, please refer to their pipeline API model card.
# reduce memory requirements
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
## Pipeline parameters
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
video = pipe(prompt, num_frames=84).frames[0]
export_to_video(video, "output.mp4", fps=30)
```
There are several parameters to configure in the pipeline that'll affect video generation quality or speed. Experimenting with different parameter values is important for discovering the appropriate quality and speed tradeoff.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/mochi-video-output.gif"/>
</div>
### num_frames
</hfoption>
<hfoption id="StableVideoDiffusion">
A frame is a still image that is played in a sequence of other frames to create motion or a video. Control the number of frames generated per second with `num_frames`. Increasing `num_frames` increases perceived motion smoothness and visual coherence, making it especially important for videos with dynamic content. A higher `num_frames` value also increases video duration.
[StableVideoDiffusion (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image.
Some video models require more specific `num_frames` values for inference. For example, [`HunyuanVideoPipeline`] recommends calculating the `num_frames` with `(4 * num_frames) +1`. Always check a pipelines API model card to see if there is a recommended value.
```py
import torch
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
# reduce memory requirements
pipeline.enable_model_cpu_offload()
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video", torch_dtype=torch.bfloat16
).to("cuda")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman
with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The
camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be
real-life footage
"""
generator = torch.manual_seed(42)
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/output_rocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
</hfoption>
<hfoption id="AnimateDiff">
### guidance_scale
[AnimateDiff](https://huggingface.co/guoyww/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into “video models”.
Load a `MotionAdapter` and pass it to the [`AnimateDiffPipeline`].
Guidance scale or "cfg" controls how closely the generated frames adhere to the input conditioning (text, image or both). Increasing `guidance_scale` generates frames that resemble the input conditions more closely and includes finer details, but risk introducing artifacts and reducing output diversity. Lower `guidance_scale` values encourages looser prompt adherence and increased output variety, but details may not be as great. If it's too low, it may ignore your prompt entirely and generate random noise.
```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video
# reduce memory requirements
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
).to("cuda")
output = pipeline(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(49),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over
a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown,
with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an
oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at
a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""
video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
</div>
</hfoption>
</hfoptions>
## Configure model parameters
There are a few important parameters you can configure in the pipeline that'll affect the video generation process and quality. Let's take a closer look at what these parameters do and how changing them affects the output.
### Number of frames
### negative_prompt
The `num_frames` parameter determines how many video frames are generated per second. A frame is an image that is played in a sequence of other frames to create motion or a video. This affects video length because the pipeline generates a certain number of frames per second (check a pipeline's API reference for the default value). To increase the video duration, you'll need to increase the `num_frames` parameter.
A negative prompt is useful for excluding things you don't want to see in the generated video. It is commonly used to refine the quality and alignment of the generated video by pushing the model away from undesirable elements like "blurry, distorted, ugly". This can create cleaner and more focused videos.
```py
# pip install ftfy
import torch
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from diffusers import WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.utils import export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipeline.enable_model_cpu_offload()
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers", vae=vae, torch_dtype=torch.bfloat16
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(
pipeline.scheduler.config, flow_shift=5.0
)
pipeline.to("cuda")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
pipeline.load_lora_weights("benjamin-paine/steamboat-willie-14b", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie")
generator = torch.manual_seed(42)
frames = pipeline(image, decode_chunk_size=8, generator=generator, num_frames=25).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
pipeline.enable_model_cpu_offload()
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/num_frames_14.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">num_frames=14</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/num_frames_25.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">num_frames=25</figcaption>
</div>
</div>
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts
dynamic shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
### Guidance scale
output = pipeline(
prompt=prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
The `guidance_scale` parameter controls how closely aligned the generated video and text prompt or initial image is. A higher `guidance_scale` value means your generated video is more aligned with the text prompt or initial image, while a lower `guidance_scale` value means your generated video is less aligned which could give the model more "creativity" to interpret the conditioning input.
## Reduce memory usage
<Tip>
Recent video models like [`HunyuanVideoPipeline`] and [`WanPipeline`], which have 10B+ parameters, require a lot of memory and it often exceeds the memory availabe on consumer hardware. Diffusers offers several techniques for reducing the memory requirements of these large models.
SVD uses the `min_guidance_scale` and `max_guidance_scale` parameters for applying guidance to the first and last frames respectively.
> [!TIP]
> Refer to the [Reduce memory usage](../optimization/memory) guide for more details about other memory saving techniques.
</Tip>
One of these techniques is [group-offloading](../optimization/memory#group-offloading), which offloads groups of internal model layers (such as `torch.nn.Sequential`) to the CPU when it isn't being used. These layers are only loaded when they're needed for computation to avoid storing **all** the model components on the GPU. For a 14B parameter model like [`WanPipeline`], group-offloading can lower the required memory to ~13GB of VRAM.
```py
# pip install ftfy
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
image = load_image(image_url).convert("RGB")
import numpy as np
from diffusers import AutoModel, WanPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True
)
prompt = "Papers were floating in the air on a table in the library"
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
generator = torch.manual_seed(0)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
frames = pipeline(
output = pipeline(
prompt=prompt,
image=image,
num_inference_steps=50,
negative_prompt=negative_prompt,
guidance_scale=1.0,
generator=generator
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_gif(frames, "i2v.gif")
export_to_video(output, "output.mp4", fps=16)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale=9.0</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guidance_scale_1.0.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale=1.0</figcaption>
</div>
</div>
Another option for reducing memory is to consider quantizing a model, which stores the model weights in a lower precision data type. However, quantization may impact video quality depending on the specific video model. Refer to the quantization [Overivew](../quantization/overview) to learn more about the different supported quantization backends.
### Negative prompt
A negative prompt deters the model from generating things you don’t want it to. This parameter is commonly used to improve overall generation quality by removing poor or bad features such as “low resolution” or “bad details”.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize a model.
```py
# pip install ftfy
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
from diffusers import WanPipeline
from diffusers import AutoModel, WanPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from transformers import UMT5EncoderModel
from diffusers.utils import export_to_video
output = pipeline(
prompt="360 camera shot of a sushi roll in a restaurant",
negative_prompt="Distorted, discontinuous, ugly, blurry, low resolution, motionless, static",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
# quantize transformer and text encoder weights with bitsandbytes
pipeline_quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True},
components_to_quantize=["transformer", "text_encoder"]
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_no_neg.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">no negative prompt</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_neg.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">negative prompt applied</figcaption>
</div>
</div>
### Model-specific parameters
There are some pipeline parameters that are unique to each model such as adjusting the motion in a video or adding noise to the initial image.
<hfoptions id="special-parameters">
<hfoption id="Stable Video Diffusion">
Stable Video Diffusion provides additional micro-conditioning for the frame rate with the `fps` parameter and for motion with the `motion_bucket_id` parameter. Together, these parameters allow for adjusting the amount of motion in the generated video.
There is also a `noise_aug_strength` parameter that increases the amount of noise added to the initial image. Varying this parameter affects how similar the generated video and initial image are. A higher `noise_aug_strength` also increases the amount of motion. To learn more, read the [Micro-conditioning](../using-diffusers/svd#micro-conditioning) guide.
</hfoption>
<hfoption id="Text2Video-Zero">
Text2Video-Zero computes the amount of motion to apply to each frame from randomly sampled latents. You can use the `motion_field_strength_x` and `motion_field_strength_y` parameters to control the amount of motion to apply to the x and y-axes of the video. The parameters `t0` and `t1` are the timesteps to apply motion to the latents.
</hfoption>
</hfoptions>
## Control video generation
Video generation can be controlled similar to how text-to-image, image-to-image, and inpainting can be controlled with a [`ControlNetModel`]. The only difference is you need to use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] so each frame attends to the first frame.
### Text2Video-Zero
Text2Video-Zero video generation can be conditioned on pose and edge images for even greater control over a subject's motion in the generated video or to preserve the identity of a subject/object in the video. You can also use Text2Video-Zero with [InstructPix2Pix](../api/pipelines/pix2pix) for editing videos with text.
<hfoptions id="t2v-zero">
<hfoption id="pose control">
Start by downloading a video and extracting the pose images from it.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
vae = AutoModel.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers", vae=vae, quantization_config=pipeline_quant_config, torch_dtype=torch.bfloat16
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(
pipeline.scheduler.config, flow_shift=5.0
)
pipeline.to("cuda")
Load a [`ControlNetModel`] for pose estimation and a checkpoint into the [`StableDiffusionControlNetPipeline`]. Then you'll use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet and ControlNet.
pipeline.load_lora_weights("benjamin-paine/steamboat-willie-14b", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie")
```py
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
pipeline.enable_model_cpu_offload()
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts
dynamic shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipeline.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
output = pipeline(
prompt=prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
Fix the latents for all the frames, and then pass your prompt and extracted pose images to the model to generate a video.
## Inference speed
```py
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
[torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial_.html) can speedup inference by using optimized kernels. Compilation takes longer the first time, but once compiled, it is much faster. It is best to compile the pipeline once, and then use the pipeline multiple times without changing anything. A change, such as in the image size, triggers recompilation.
prompt = "Darth Vader dancing in a desert"
result = pipeline(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
</hfoption>
<hfoption id="edge control">
Download a video and extract the edges from it.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
Load a [`ControlNetModel`] for canny edge and a checkpoint into the [`StableDiffusionControlNetPipeline`]. Then you'll use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet and ControlNet.
The example below compiles the transformer in the pipeline and uses the `"max-autotune"` mode to maximize performance.
```py
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
).to("cuda")
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipeline.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
```
Fix the latents for all the frames, and then pass your prompt and extracted edge images to the model to generate a video.
```py
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
prompt = "Darth Vader dancing in a desert"
result = pipeline(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
</hfoption>
<hfoption id="InstructPix2Pix">
InstructPix2Pix allows you to use text to describe the changes you want to make to the video. Start by downloading and reading a video.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/pix2pix video/camel.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
video = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
Load the [`StableDiffusionInstructPix2PixPipeline`] and set the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet.
```py
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16).to("cuda")
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=3))
```
Pass a prompt describing the change you want to apply to the video.
```py
prompt = "make it Van Gogh Starry Night style"
result = pipeline(prompt=[prompt] * len(video), image=video).images
imageio.mimsave("edited_video.mp4", result, fps=4)
```
</hfoption>
</hfoptions>
## Optimize
Video generation requires a lot of memory because you're generating many video frames at once. You can reduce your memory requirements at the expense of some inference speed. Try:
1. offloading pipeline components that are no longer needed to the CPU
2. feed-forward chunking runs the feed-forward layer in a loop instead of all at once
3. break up the number of frames the VAE has to decode into chunks instead of decoding them all at once
```diff
- pipeline.enable_model_cpu_offload()
- frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
+ pipeline.enable_model_cpu_offload()
+ pipeline.unet.enable_forward_chunking()
+ frames = pipeline(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
```
If memory is not an issue and you want to optimize for speed, try wrapping the UNet with [`torch.compile`](../optimization/fp16#torchcompile).
```diff
- pipeline.enable_model_cpu_offload()
+ pipeline.to("cuda")
+ pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
Refer to the [Quantization](../../quantization/overview) to learn more about supported quantization backends (bitsandbytes, torchao, gguf) and selecting a quantization backend that supports your use case.
prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse.
Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""
video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment