Commit bc2d586d authored by Patrick von Platen's avatar Patrick von Platen
Browse files

remove more dependencies

parent 49a81f9f
...@@ -2,105 +2,14 @@ ...@@ -2,105 +2,14 @@
import numpy as np import numpy as np
import PIL import PIL
import torch import torch
import ml_collections
#from configs.ve import ffhq_ncsnpp_continuous as configs #from configs.ve import ffhq_ncsnpp_continuous as configs
# from configs.ve import cifar10_ncsnpp_continuous as configs # from configs.ve import cifar10_ncsnpp_continuous as configs
# ffhq_ncsnpp_continuous config device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
def get_config():
config = ml_collections.ConfigDict()
# training
config.training = training = ml_collections.ConfigDict()
training.batch_size = 8
training.n_iters = 2400001
training.snapshot_freq = 50000
training.log_freq = 50
training.eval_freq = 100
training.snapshot_freq_for_preemption = 5000
training.snapshot_sampling = True
training.sde = 'vesde'
training.continuous = True
training.likelihood_weighting = False
training.reduce_mean = True
# sampling
config.sampling = sampling = ml_collections.ConfigDict()
sampling.method = 'pc'
sampling.predictor = 'reverse_diffusion'
sampling.corrector = 'langevin'
sampling.probability_flow = False
sampling.snr = 0.15
sampling.n_steps_each = 1
sampling.noise_removal = True
# eval
config.eval = evaluate = ml_collections.ConfigDict()
evaluate.batch_size = 1024
evaluate.num_samples = 50000
evaluate.begin_ckpt = 1
evaluate.end_ckpt = 96
# data
config.data = data = ml_collections.ConfigDict()
data.dataset = 'FFHQ'
data.image_size = 1024
data.centered = False
data.random_flip = True
data.uniform_dequantization = False
data.num_channels = 3
# Plug in your own path to the tfrecords file.
data.tfrecords_path = '/raid/song/ffhq-dataset/ffhq/ffhq-r10.tfrecords'
# model
config.model = model = ml_collections.ConfigDict()
model.name = 'ncsnpp'
model.scale_by_sigma = True
model.sigma_max = 1348
model.num_scales = 2000
model.ema_rate = 0.9999
model.sigma_min = 0.01
model.normalization = 'GroupNorm'
model.nonlinearity = 'swish'
model.nf = 16
model.ch_mult = (1, 2, 4, 8, 16, 32, 32, 32)
model.num_res_blocks = 1
model.attn_resolutions = (16,)
model.dropout = 0.
model.resamp_with_conv = True
model.conditional = True
model.fir = True
model.fir_kernel = [1, 3, 3, 1]
model.skip_rescale = True
model.resblock_type = 'biggan'
model.progressive = 'output_skip'
model.progressive_input = 'input_skip'
model.progressive_combine = 'sum'
model.attention_type = 'ddpm'
model.init_scale = 0.
model.fourier_scale = 16
model.conv_size = 3
model.embedding_type = 'fourier'
# optim
config.optim = optim = ml_collections.ConfigDict()
optim.weight_decay = 0
optim.optimizer = 'Adam'
optim.lr = 2e-4
optim.beta1 = 0.9
optim.amsgrad = False
optim.eps = 1e-8
optim.warmup = 5000
optim.grad_clip = 1.
config.seed = 42
config.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
return config
torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_tf32 = False
torch.manual_seed(3) torch.manual_seed(0)
class NewReverseDiffusionPredictor: class NewReverseDiffusionPredictor:
...@@ -182,46 +91,25 @@ def save_image(x): ...@@ -182,46 +91,25 @@ def save_image(x):
# Note usually we need to restore ema etc... # Note usually we need to restore ema etc...
# ema restored checkpoint used from below # ema restored checkpoint used from below
N = 2
sigma_min = 0.01
config = get_config() sigma_max = 1348
sigma_min, sigma_max = config.model.sigma_min, config.model.sigma_max
N = config.model.num_scales
sampling_eps = 1e-5 sampling_eps = 1e-5
batch_size = 1
batch_size = 1 #@param {"type":"integer"} centered = False
config.training.batch_size = batch_size
config.eval.batch_size = batch_size
from diffusers import NCSNpp from diffusers import NCSNpp
model = NCSNpp(config).to(config.device)
model = torch.nn.DataParallel(model)
loaded_state = torch.load("../score_sde_pytorch/ffhq_1024_ncsnpp_continuous_ema.pt")
del loaded_state["module.sigmas"]
model.load_state_dict(loaded_state, strict=False)
def get_data_inverse_scaler(config):
"""Inverse data normalizer."""
if config.data.centered:
# Rescale [-1, 1] to [0, 1]
return lambda x: (x + 1.) / 2.
else:
return lambda x: x
inverse_scaler = get_data_inverse_scaler(config) model = NCSNpp.from_pretrained("/home/patrick/ffhq_ncsnpp").to(device)
model = torch.nn.DataParallel(model)
img_size = config.data.image_size img_size = model.module.config.image_size
channels = config.data.num_channels channels = model.module.config.num_channels
shape = (batch_size, channels, img_size, img_size) shape = (batch_size, channels, img_size, img_size)
probability_flow = False probability_flow = False
snr = 0.15 #@param {"type": "number"} snr = 0.15
n_steps = 1#@param {"type": "integer"} n_steps = 1
device = config.device
new_corrector = NewLangevinCorrector(score_fn=model, snr=snr, n_steps=n_steps, sigma_min=sigma_min, sigma_max=sigma_max) new_corrector = NewLangevinCorrector(score_fn=model, snr=snr, n_steps=n_steps, sigma_min=sigma_min, sigma_max=sigma_max)
new_predictor = NewReverseDiffusionPredictor(score_fn=model, sigma_min=sigma_min, sigma_max=sigma_max, N=N) new_predictor = NewReverseDiffusionPredictor(score_fn=model, sigma_min=sigma_min, sigma_max=sigma_max, N=N)
...@@ -238,10 +126,12 @@ with torch.no_grad(): ...@@ -238,10 +126,12 @@ with torch.no_grad():
x, x_mean = new_corrector.update_fn(x, vec_t) x, x_mean = new_corrector.update_fn(x, vec_t)
x, x_mean = new_predictor.update_fn(x, vec_t) x, x_mean = new_predictor.update_fn(x, vec_t)
x = inverse_scaler(x_mean) x = x_mean
if centered:
x = (x + 1.) / 2.
save_image(x) # save_image(x)
# for 5 cifar10 # for 5 cifar10
x_sum = 106071.9922 x_sum = 106071.9922
...@@ -260,4 +150,4 @@ def check_x_sum_x_mean(x, x_sum, x_mean): ...@@ -260,4 +150,4 @@ def check_x_sum_x_mean(x, x_sum, x_mean):
assert (x.abs().mean() - x_mean).abs().cpu().item() < 1e-4, f"mean wrong {x.abs().mean()}" assert (x.abs().mean() - x_mean).abs().cpu().item() < 1e-4, f"mean wrong {x.abs().mean()}"
#check_x_sum_x_mean(x, x_sum, x_mean) check_x_sum_x_mean(x, x_sum, x_mean)
...@@ -15,6 +15,9 @@ ...@@ -15,6 +15,9 @@
# helpers functions # helpers functions
from ..modeling_utils import ModelMixin
from ..configuration_utils import ConfigMixin
import functools import functools
import math import math
...@@ -372,16 +375,16 @@ class NIN(nn.Module): ...@@ -372,16 +375,16 @@ class NIN(nn.Module):
return y.permute(0, 3, 1, 2) return y.permute(0, 3, 1, 2)
def get_act(config): def get_act(nonlinearity):
"""Get activation functions from the config file.""" """Get activation functions from the config file."""
if config.model.nonlinearity.lower() == "elu": if nonlinearity.lower() == "elu":
return nn.ELU() return nn.ELU()
elif config.model.nonlinearity.lower() == "relu": elif nonlinearity.lower() == "relu":
return nn.ReLU() return nn.ReLU()
elif config.model.nonlinearity.lower() == "lrelu": elif nonlinearity.lower() == "lrelu":
return nn.LeakyReLU(negative_slope=0.2) return nn.LeakyReLU(negative_slope=0.2)
elif config.model.nonlinearity.lower() == "swish": elif nonlinearity.lower() == "swish":
return nn.SiLU() return nn.SiLU()
else: else:
raise NotImplementedError("activation function does not exist!") raise NotImplementedError("activation function does not exist!")
...@@ -710,46 +713,93 @@ class ResnetBlockBigGANpp(nn.Module): ...@@ -710,46 +713,93 @@ class ResnetBlockBigGANpp(nn.Module):
return (x + h) / np.sqrt(2.0) return (x + h) / np.sqrt(2.0)
class NCSNpp(nn.Module): class NCSNpp(ModelMixin, ConfigMixin):
"""NCSN++ model""" """NCSN++ model"""
def __init__(self, config): def __init__(
self,
centered=False,
image_size=1024,
num_channels=3,
attention_type="ddpm",
attn_resolutions=(16,),
ch_mult=(1, 2, 4, 8, 16, 32, 32, 32),
conditional=True,
conv_size=3,
dropout=0.0,
embedding_type="fourier",
fir=True,
fir_kernel=(1, 3, 3, 1),
fourier_scale=16,
init_scale=0.0,
nf=16,
nonlinearity="swish",
normalization="GroupNorm",
num_res_blocks=1,
progressive="output_skip",
progressive_combine="sum",
progressive_input="input_skip",
resamp_with_conv=True,
resblock_type="biggan",
scale_by_sigma=True,
skip_rescale=True,
continuous=True,
):
super().__init__() super().__init__()
self.config = config self.register_to_config(
self.act = act = get_act(config) centered=centered,
image_size=image_size,
num_channels=num_channels,
attention_type=attention_type,
attn_resolutions=attn_resolutions,
ch_mult=ch_mult,
conditional=conditional,
conv_size=conv_size,
dropout=dropout,
embedding_type=embedding_type,
fir=fir,
fir_kernel=fir_kernel,
fourier_scale=fourier_scale,
init_scale=init_scale,
nf=nf,
nonlinearity=nonlinearity,
normalization=normalization,
num_res_blocks=num_res_blocks,
progressive=progressive,
progressive_combine=progressive_combine,
progressive_input=progressive_input,
resamp_with_conv=resamp_with_conv,
resblock_type=resblock_type,
scale_by_sigma=scale_by_sigma,
skip_rescale=skip_rescale,
continuous=continuous,
)
self.act = act = get_act(nonlinearity)
# self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config))) # self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config)))
self.nf = nf = config.model.nf self.nf = nf
ch_mult = config.model.ch_mult self.num_res_blocks = num_res_blocks
self.num_res_blocks = num_res_blocks = config.model.num_res_blocks self.attn_resolutions = attn_resolutions
self.attn_resolutions = attn_resolutions = config.model.attn_resolutions self.num_resolutions = len(ch_mult)
dropout = config.model.dropout self.all_resolutions = all_resolutions = [image_size // (2**i) for i in range(self.num_resolutions)]
resamp_with_conv = config.model.resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult) self.conditional = conditional
self.all_resolutions = all_resolutions = [config.data.image_size // (2**i) for i in range(num_resolutions)] self.skip_rescale = skip_rescale
self.resblock_type = resblock_type
self.conditional = conditional = config.model.conditional # noise-conditional self.progressive = progressive
fir = config.model.fir self.progressive_input = progressive_input
fir_kernel = config.model.fir_kernel self.embedding_type = embedding_type
self.skip_rescale = skip_rescale = config.model.skip_rescale
self.resblock_type = resblock_type = config.model.resblock_type.lower()
self.progressive = progressive = config.model.progressive.lower()
self.progressive_input = progressive_input = config.model.progressive_input.lower()
self.embedding_type = embedding_type = config.model.embedding_type.lower()
init_scale = config.model.init_scale
assert progressive in ["none", "output_skip", "residual"] assert progressive in ["none", "output_skip", "residual"]
assert progressive_input in ["none", "input_skip", "residual"] assert progressive_input in ["none", "input_skip", "residual"]
assert embedding_type in ["fourier", "positional"] assert embedding_type in ["fourier", "positional"]
combine_method = config.model.progressive_combine.lower() combine_method = progressive_combine.lower()
combiner = functools.partial(Combine, method=combine_method) combiner = functools.partial(Combine, method=combine_method)
modules = [] modules = []
# timestep/noise_level embedding; only for continuous training # timestep/noise_level embedding; only for continuous training
if embedding_type == "fourier": if embedding_type == "fourier":
# Gaussian Fourier features embeddings. # Gaussian Fourier features embeddings.
assert config.training.continuous, "Fourier features are only used for continuous training." modules.append(GaussianFourierProjection(embedding_size=nf, scale=fourier_scale))
modules.append(GaussianFourierProjection(embedding_size=nf, scale=config.model.fourier_scale))
embed_dim = 2 * nf embed_dim = 2 * nf
elif embedding_type == "positional": elif embedding_type == "positional":
...@@ -809,7 +859,7 @@ class NCSNpp(nn.Module): ...@@ -809,7 +859,7 @@ class NCSNpp(nn.Module):
# Downsampling block # Downsampling block
channels = config.data.num_channels channels = num_channels
if progressive_input != "none": if progressive_input != "none":
input_pyramid_ch = channels input_pyramid_ch = channels
...@@ -817,7 +867,7 @@ class NCSNpp(nn.Module): ...@@ -817,7 +867,7 @@ class NCSNpp(nn.Module):
hs_c = [nf] hs_c = [nf]
in_ch = nf in_ch = nf
for i_level in range(num_resolutions): for i_level in range(self.num_resolutions):
# Residual blocks for this resolution # Residual blocks for this resolution
for i_block in range(num_res_blocks): for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level] out_ch = nf * ch_mult[i_level]
...@@ -828,7 +878,7 @@ class NCSNpp(nn.Module): ...@@ -828,7 +878,7 @@ class NCSNpp(nn.Module):
modules.append(AttnBlock(channels=in_ch)) modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch) hs_c.append(in_ch)
if i_level != num_resolutions - 1: if i_level != self.num_resolutions - 1:
if resblock_type == "ddpm": if resblock_type == "ddpm":
modules.append(Downsample(in_ch=in_ch)) modules.append(Downsample(in_ch=in_ch))
else: else:
...@@ -852,7 +902,7 @@ class NCSNpp(nn.Module): ...@@ -852,7 +902,7 @@ class NCSNpp(nn.Module):
pyramid_ch = 0 pyramid_ch = 0
# Upsampling block # Upsampling block
for i_level in reversed(range(num_resolutions)): for i_level in reversed(range(self.num_resolutions)):
for i_block in range(num_res_blocks + 1): for i_block in range(num_res_blocks + 1):
out_ch = nf * ch_mult[i_level] out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch)) modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
...@@ -862,7 +912,7 @@ class NCSNpp(nn.Module): ...@@ -862,7 +912,7 @@ class NCSNpp(nn.Module):
modules.append(AttnBlock(channels=in_ch)) modules.append(AttnBlock(channels=in_ch))
if progressive != "none": if progressive != "none":
if i_level == num_resolutions - 1: if i_level == self.num_resolutions - 1:
if progressive == "output_skip": if progressive == "output_skip":
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale)) modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
...@@ -899,7 +949,6 @@ class NCSNpp(nn.Module): ...@@ -899,7 +949,6 @@ class NCSNpp(nn.Module):
self.all_modules = nn.ModuleList(modules) self.all_modules = nn.ModuleList(modules)
def forward(self, x, time_cond): def forward(self, x, time_cond):
# import ipdb; ipdb.set_trace()
# timestep/noise_level embedding; only for continuous training # timestep/noise_level embedding; only for continuous training
modules = self.all_modules modules = self.all_modules
m_idx = 0 m_idx = 0
...@@ -926,7 +975,7 @@ class NCSNpp(nn.Module): ...@@ -926,7 +975,7 @@ class NCSNpp(nn.Module):
else: else:
temb = None temb = None
if not self.config.data.centered: if not self.config.centered:
# If input data is in [0, 1] # If input data is in [0, 1]
x = 2 * x - 1.0 x = 2 * x - 1.0
...@@ -1044,7 +1093,7 @@ class NCSNpp(nn.Module): ...@@ -1044,7 +1093,7 @@ class NCSNpp(nn.Module):
m_idx += 1 m_idx += 1
assert m_idx == len(modules) assert m_idx == len(modules)
if self.config.model.scale_by_sigma: if self.config.scale_by_sigma:
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:])))) used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:]))))
h = h / used_sigmas h = h / used_sigmas
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment