Commit bb306642 authored by anton-l's avatar anton-l
Browse files

Move the training example

parent 418888a5
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!) # make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src export PYTHONPATH = src
check_dirs := tests src utils check_dirs := examples tests src utils
modified_only_fixup: modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs))) $(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
......
...@@ -8,14 +8,23 @@ import PIL.Image ...@@ -8,14 +8,23 @@ import PIL.Image
from accelerate import Accelerator from accelerate import Accelerator
from datasets import load_dataset from datasets import load_dataset
from diffusers import DDPM, DDPMScheduler, UNetModel from diffusers import DDPM, DDPMScheduler, UNetModel
from torchvision.transforms import InterpolationMode, CenterCrop, Compose, Lambda, RandomRotation, RandomHorizontalFlip, Resize, ToTensor from torchvision.transforms import (
Compose,
InterpolationMode,
Lambda,
RandomCrop,
RandomHorizontalFlip,
RandomVerticalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm from tqdm.auto import tqdm
from transformers import get_linear_schedule_with_warmup from transformers import get_linear_schedule_with_warmup
def set_seed(seed): def set_seed(seed):
#torch.backends.cudnn.deterministic = True # torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False # torch.backends.cudnn.benchmark = False
torch.manual_seed(seed) torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed_all(seed)
np.random.seed(seed) np.random.seed(seed)
...@@ -33,7 +42,7 @@ model = UNetModel( ...@@ -33,7 +42,7 @@ model = UNetModel(
dropout=0.0, dropout=0.0,
num_res_blocks=2, num_res_blocks=2,
resamp_with_conv=True, resamp_with_conv=True,
resolution=32 resolution=32,
) )
noise_scheduler = DDPMScheduler(timesteps=1000) noise_scheduler = DDPMScheduler(timesteps=1000)
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4) optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
...@@ -44,15 +53,15 @@ gradient_accumulation_steps = 2 ...@@ -44,15 +53,15 @@ gradient_accumulation_steps = 2
augmentations = Compose( augmentations = Compose(
[ [
RandomHorizontalFlip(),
RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=1),
Resize(32, interpolation=InterpolationMode.BILINEAR), Resize(32, interpolation=InterpolationMode.BILINEAR),
CenterCrop(32), RandomHorizontalFlip(),
RandomVerticalFlip(),
RandomCrop(32),
ToTensor(), ToTensor(),
Lambda(lambda x: x * 2 - 1), Lambda(lambda x: x * 2 - 1),
] ]
) )
dataset = load_dataset("huggan/pokemon", split="train") dataset = load_dataset("huggan/flowers-102-categories", split="train")
def transforms(examples): def transforms(examples):
...@@ -127,5 +136,5 @@ for epoch in range(num_epochs): ...@@ -127,5 +136,5 @@ for epoch in range(num_epochs):
image_pil = PIL.Image.fromarray(image_processed[0]) image_pil = PIL.Image.fromarray(image_processed[0])
# save image # save image
pipeline.save_pretrained("./poke-ddpm") pipeline.save_pretrained("./flowers-ddpm")
image_pil.save(f"./poke-ddpm/test_{epoch}.png") image_pil.save(f"./flowers-ddpm/test_{epoch}.png")
...@@ -19,7 +19,7 @@ import unittest ...@@ -19,7 +19,7 @@ import unittest
import torch import torch
from diffusers import DDIM, DDPM, DDIMScheduler, DDPMScheduler, LatentDiffusion, UNetModel, PNDM, PNDMScheduler from diffusers import DDIM, DDPM, PNDM, DDIMScheduler, DDPMScheduler, LatentDiffusion, PNDMScheduler, UNetModel
from diffusers.configuration_utils import ConfigMixin from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.testing_utils import floats_tensor, slow, torch_device from diffusers.testing_utils import floats_tensor, slow, torch_device
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment