Unverified Commit bae14c8b authored by Steven Liu's avatar Steven Liu Committed by GitHub
Browse files

[docs] Update training docs (#5512)

* first draft

* try hfoption syntax

* fix hfoption id

* add text2image

* fix tag

* feedback

* feedbacks

* add textual inversion

* DreamBooth

* lora

* controlnet

* instructpix2pix

* custom diffusion

* t2i

* separate training methods and models

* sdxl

* kandinsky

* wuerstchen

* light edits
parent ded93f79
...@@ -100,26 +100,36 @@ ...@@ -100,26 +100,36 @@
title: Create a dataset for training title: Create a dataset for training
- local: training/adapt_a_model - local: training/adapt_a_model
title: Adapt a model to a new task title: Adapt a model to a new task
- sections:
- local: training/unconditional_training - local: training/unconditional_training
title: Unconditional image generation title: Unconditional image generation
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/text2image - local: training/text2image
title: Text-to-image title: Text-to-image
- local: training/lora - local: training/sdxl
title: Low-Rank Adaptation of Large Language Models (LoRA) title: Stable Diffusion XL
- local: training/kandinsky
title: Kandinsky 2.2
- local: training/wuerstchen
title: Wuerstchen
- local: training/controlnet - local: training/controlnet
title: ControlNet title: ControlNet
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/instructpix2pix - local: training/instructpix2pix
title: InstructPix2Pix Training title: InstructPix2Pix
title: Models
- sections:
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/lora
title: LoRA
- local: training/custom_diffusion - local: training/custom_diffusion
title: Custom Diffusion title: Custom Diffusion
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/ddpo - local: training/ddpo
title: Reinforcement learning training with DDPO title: Reinforcement learning training with DDPO
title: Methods
title: Training title: Training
- sections: - sections:
- local: using-diffusers/other-modalities - local: using-diffusers/other-modalities
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 2.2
<Tip warning={true}>
This script is experimental, and it's easy to overfit and run into issues like catastrophic forgetting. Try exploring different hyperparameters to get the best results on your dataset.
</Tip>
Kandinsky 2.2 is a multilingual text-to-image model capable of producing more photorealistic images. The model includes an image prior model for creating image embeddings from text prompts, and a decoder model that generates images based on the prior model's embeddings. That's why you'll find two separate scripts in Diffusers for Kandinsky 2.2, one for training the prior model and one for training the decoder model. You can train both models separately, but to get the best results, you should train both the prior and decoder models.
Depending on your GPU, you may need to enable `gradient_checkpointing` (⚠️ not supported for the prior model!), `mixed_precision`, and `gradient_accumulation_steps` to help fit the model into memory and to speedup training. You can reduce your memory-usage even more by enabling memory-efficient attention with [xFormers](../optimization/xformers) (version [v0.0.16](https://github.com/huggingface/diffusers/issues/2234#issuecomment-1416931212) fails for training on some GPUs so you may need to install a development version instead).
This guide explores the [train_text_to_image_prior.py](https://github.com/huggingface/diffusers/blob/main/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py) and the [train_text_to_image_decoder.py](https://github.com/huggingface/diffusers/blob/main/examples/kandinsky2_2/text_to_image/train_text_to_image_decoder.py) scripts to help you become more familiar with it, and how you can adapt it for your own use-case.
Before running the scripts, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
```bash
cd examples/kandinsky2_2/text_to_image
pip install -r requirements.txt
```
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
</Tip>
Initialize an 🤗 Accelerate environment:
```bash
accelerate config
```
To setup a default 🤗 Accelerate environment without choosing any configurations:
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
from accelerate.utils import write_basic_config
write_basic_config()
```
Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.
<Tip>
The following sections highlight parts of the training scripts that are important for understanding how to modify it, but it doesn't cover every aspect of the scripts in detail. If you're interested in learning more, feel free to read through the scripts and let us know if you have any questions or concerns.
</Tip>
## Script parameters
The training scripts provides many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py#L190) function. The training scripts provides default values for each parameter, such as the training batch size and learning rate, but you can also set your own values in the training command if you'd like.
For example, to speedup training with mixed precision using the fp16 format, add the `--mixed_precision` parameter to the training command:
```bash
accelerate launch train_text_to_image_prior.py \
--mixed_precision="fp16"
```
Most of the parameters are identical to the parameters in the [Text-to-image](text2image#script-parameters) training guide, so let's get straight to a walkthrough of the Kandinsky training scripts!
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
```bash
accelerate launch train_text_to_image_prior.py \
--snr_gamma=5.0
```
## Training script
The training script is also similar to the [Text-to-image](text2image#training-script) training guide, but it's been modified to support training the prior and decoder models. This guide focuses on the code that is unique to the Kandinsky 2.2 training scripts.
<hfoptions id="script">
<hfoption id="prior model">
The [`main()`](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py#L441) function contains the code for preparing the dataset and training the model.
One of the main differences you'll notice right away is that the training script also loads a [`~transformers.CLIPImageProcessor`] - in addition to a scheduler and tokenizer - for preprocessing images and a [`~transformers.CLIPVisionModelWithProjection`] model for encoding the images:
```py
noise_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", prediction_type="sample")
image_processor = CLIPImageProcessor.from_pretrained(
args.pretrained_prior_model_name_or_path, subfolder="image_processor"
)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="tokenizer")
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_prior_model_name_or_path, subfolder="image_encoder", torch_dtype=weight_dtype
).eval()
text_encoder = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_prior_model_name_or_path, subfolder="text_encoder", torch_dtype=weight_dtype
).eval()
```
Kandinsky uses a [`PriorTransformer`] to generate the image embeddings, so you'll want to setup the optimizer to learn the prior mode's parameters.
```py
prior = PriorTransformer.from_pretrained(args.pretrained_prior_model_name_or_path, subfolder="prior")
prior.train()
optimizer = optimizer_cls(
prior.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
```
Next, the input captions are tokenized, and images are [preprocessed](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py#L632) by the [`~transformers.CLIPImageProcessor`]:
```py
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["clip_pixel_values"] = image_processor(images, return_tensors="pt").pixel_values
examples["text_input_ids"], examples["text_mask"] = tokenize_captions(examples)
return examples
```
Finally, the [training loop](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_prior.py#L718) converts the input images into latents, adds noise to the image embeddings, and makes a prediction:
```py
model_pred = prior(
noisy_latents,
timestep=timesteps,
proj_embedding=prompt_embeds,
encoder_hidden_states=text_encoder_hidden_states,
attention_mask=text_mask,
).predicted_image_embedding
```
If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.
</hfoption>
<hfoption id="decoder model">
The [`main()`](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_decoder.py#L440) function contains the code for preparing the dataset and training the model.
Unlike the prior model, the decoder initializes a [`VQModel`] to decode the latents into images and it uses a [`UNet2DConditionModel`]:
```py
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
vae = VQModel.from_pretrained(
args.pretrained_decoder_model_name_or_path, subfolder="movq", torch_dtype=weight_dtype
).eval()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_prior_model_name_or_path, subfolder="image_encoder", torch_dtype=weight_dtype
).eval()
unet = UNet2DConditionModel.from_pretrained(args.pretrained_decoder_model_name_or_path, subfolder="unet")
```
Next, the script includes several image transforms and a [preprocessing](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_decoder.py#L622) function for applying the transforms to the images and returning the pixel values:
```py
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["clip_pixel_values"] = image_processor(images, return_tensors="pt").pixel_values
return examples
```
Lastly, the [training loop](https://github.com/huggingface/diffusers/blob/6e68c71503682c8693cb5b06a4da4911dfd655ee/examples/kandinsky2_2/text_to_image/train_text_to_image_decoder.py#L706) handles converting the images to latents, adding noise, and predicting the noise residual.
If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.
```py
model_pred = unet(noisy_latents, timesteps, None, added_cond_kwargs=added_cond_kwargs).sample[:, :4]
```
</hfoption>
</hfoptions>
## Launch the script
Once you’ve made all your changes or you’re okay with the default configuration, you’re ready to launch the training script! 🚀
You'll train on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokémon, but you can also create and train on your own dataset by following the [Create a dataset for training](create_dataset) guide. Set the environment variable `DATASET_NAME` to the name of the dataset on the Hub or if you're training on your own files, set the environment variable `TRAIN_DIR` to a path to your dataset.
If you’re training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
<Tip>
To monitor training progress with Weights & Biases, add the `--report_to=wandb` parameter to the training command. You’ll also need to add the `--validation_prompt` to the training command to keep track of results. This can be really useful for debugging the model and viewing intermediate results.
</Tip>
<hfoptions id="training-inference">
<hfoption id="prior model">
```bash
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \
--dataset_name=$DATASET_NAME \
--resolution=768 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--checkpoints_total_limit=3 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--validation_prompts="A robot pokemon, 4k photo" \
--report_to="wandb" \
--push_to_hub \
--output_dir="kandi2-prior-pokemon-model"
```
</hfoption>
<hfoption id="decoder model">
```bash
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \
--dataset_name=$DATASET_NAME \
--resolution=768 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--checkpoints_total_limit=3 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--validation_prompts="A robot pokemon, 4k photo" \
--report_to="wandb" \
--push_to_hub \
--output_dir="kandi2-decoder-pokemon-model"
```
</hfoption>
</hfoptions>
Once training is finished, you can use your newly trained model for inference!
<hfoptions id="training-inference">
<hfoption id="prior model">
```py
from diffusers import AutoPipelineForText2Image, DiffusionPipeline
import torch
prior_pipeline = DiffusionPipeline.from_pretrained(output_dir, torch_dtype=torch.float16)
prior_components = {"prior_" + k: v for k,v in prior_pipeline.components.items()}
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", **prior_components, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt="A robot pokemon, 4k photo"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt).images[0]
```
<Tip>
Feel free to replace `kandinsky-community/kandinsky-2-2-decoder` with your own trained decoder checkpoint!
</Tip>
</hfoption>
<hfoption id="decoder model">
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("path/to/saved/model", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt="A robot pokemon, 4k photo"
image = pipeline(prompt=prompt).images[0]
```
For the decoder model, you can also perform inference from a saved checkpoint which can be useful for viewing intermediate results. In this case, load the checkpoint into the UNet:
```py
from diffusers import AutoPipelineForText2Image, UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained("path/to/saved/model" + "/checkpoint-<N>/unet")
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", unet=unet, torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
image = pipeline(prompt="A robot pokemon, 4k photo").images[0]
```
</hfoption>
</hfoptions>
## Next steps
Congratulations on training a Kandinsky 2.2 model! To learn more about how to use your new model, the following guides may be helpful:
- Read the [Kandinsky](../using-diffusers/kandinsky) guide to learn how to use it for a variety of different tasks (text-to-image, image-to-image, inpainting, interpolation), and how it can be combined with a ControlNet.
- Check out the [DreamBooth](dreambooth) and [LoRA](lora) training guides to learn how to train a personalized Kandinsky model with just a few example images. These two training techniques can even be combined!
This diff is collapsed.
...@@ -10,66 +10,37 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o ...@@ -10,66 +10,37 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License. specific language governing permissions and limitations under the License.
--> -->
# 🧨 Diffusers Training Examples # Overview
Diffusers training examples are a collection of scripts to demonstrate how to effectively use the `diffusers` library 🤗 Diffusers provides a collection of training scripts for you to train your own diffusion models. You can find all of our training scripts in [diffusers/examples](https://github.com/huggingface/diffusers/tree/main/examples).
for a variety of use cases.
**Note**: If you are looking for **official** examples on how to use `diffusers` for inference, Each training script is:
please have a look at [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)
Our examples aspire to be **self-contained**, **easy-to-tweak**, **beginner-friendly** and for **one-purpose-only**. - **Self-contained**: the training script does not depend on any local files, and all packages required to run the script are installed from the `requirements.txt` file.
More specifically, this means: - **Easy-to-tweak**: the training scripts are an example of how to train a diffusion model for a specific task and won't work out-of-the-box for every training scenario. You'll likely need to adapt the training script for your specific use-case. To help you with that, we've fully exposed the data preprocessing code and the training loop so you can modify it for your own use.
- **Beginner-friendly**: the training scripts are designed to be beginner-friendly and easy to understand, rather than including the latest state-of-the-art methods to get the best and most competitive results. Any training methods we consider too complex are purposefully left out.
- **Single-purpose**: each training script is expressly designed for only one task to keep it readable and understandable.
- **Self-contained**: An example script shall only depend on "pip-install-able" Python packages that can be found in a `requirements.txt` file. Example scripts shall **not** depend on any local files. This means that one can simply download an example script, *e.g.* [train_unconditional.py](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py), install the required dependencies, *e.g.* [requirements.txt](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/requirements.txt) and execute the example script. Our current collection of training scripts include:
- **Easy-to-tweak**: While we strive to present as many use cases as possible, the example scripts are just that - examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. To help you with that, most of the examples fully expose the preprocessing of the data and the training loop to allow you to tweak and edit them as required.
- **Beginner-friendly**: We do not aim for providing state-of-the-art training scripts for the newest models, but rather examples that can be used as a way to better understand diffusion models and how to use them with the `diffusers` library. We often purposefully leave out certain state-of-the-art methods if we consider them too complex for beginners.
- **One-purpose-only**: Examples should show one task and one task only. Even if a task is from a modeling
point of view very similar, *e.g.* image super-resolution and image modification tend to use the same model and training method, we want examples to showcase only one task to keep them as readable and easy-to-understand as possible.
We provide **official** examples that cover the most popular tasks of diffusion models. | Training | SDXL-support | LoRA-support | Flax-support |
*Official* examples are **actively** maintained by the `diffusers` maintainers and we try to rigorously follow our example philosophy as defined above. |---|---|---|---|
If you feel like another important example should exist, we are more than happy to welcome a [Feature Request](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=) or directly a [Pull Request](https://github.com/huggingface/diffusers/compare) from you! | [unconditional image generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) | | | |
| [text-to-image](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) | 👍 | 👍 | 👍 |
| [textual inversion](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb) | | | 👍 |
| [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb) | 👍 | 👍 | 👍 |
| [ControlNet](https://github.com/huggingface/diffusers/tree/main/examples/controlnet) | 👍 | | 👍 |
| [InstructPix2Pix](https://github.com/huggingface/diffusers/tree/main/examples/instruct_pix2pix) | 👍 | | |
| [Custom Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/custom_diffusion) | | | |
| [T2I-Adapters](https://github.com/huggingface/diffusers/tree/main/examples/t2i_adapter) | 👍 | | |
| [Kandinsky 2.2](https://github.com/huggingface/diffusers/tree/main/examples/kandinsky2_2/text_to_image) | | 👍 | |
| [Wuerstchen](https://github.com/huggingface/diffusers/tree/main/examples/wuerstchen/text_to_image) | | 👍 | |
Training examples show how to pretrain or fine-tune diffusion models for a variety of tasks. Currently we support: These examples are **actively** maintained, so please feel free to open an issue if they aren't working as expected. If you feel like another training example should be included, you're more than welcome to start a [Feature Request](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=) to discuss your feature idea with us and whether it meets our criteria of being self-contained, easy-to-tweak, beginner-friendly, and single-purpose.
- [Unconditional Training](./unconditional_training) ## Install
- [Text-to-Image Training](./text2image)<sup>*</sup>
- [Text Inversion](./text_inversion)
- [Dreambooth](./dreambooth)<sup>*</sup>
- [LoRA Support](./lora)<sup>*</sup>
- [ControlNet](./controlnet)<sup>*</sup>
- [InstructPix2Pix](./instructpix2pix)<sup>*</sup>
- [Custom Diffusion](./custom_diffusion)
- [T2I-Adapters](./t2i_adapters)<sup>*</sup>
<sup>*</sup>: Supports [Stable Diffusion XL](../api/pipelines/stable_diffusion/stable_diffusion_xl). Make sure you can successfully run the latest versions of the example scripts by installing the library from source in a new virtual environment:
If possible, please [install xFormers](../optimization/xformers) for memory efficient attention. This could help make your training faster and less memory intensive.
| Task | 🤗 Accelerate | 🤗 Datasets | Colab
|---|---|:---:|:---:|
| [**Unconditional Image Generation**](./unconditional_training) | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [**Text-to-Image fine-tuning**](./text2image) | ✅ | ✅ |
| [**Textual Inversion**](./text_inversion) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**Training with LoRA**](./lora) | ✅ | - | - |
| [**ControlNet**](./controlnet) | ✅ | ✅ | - |
| [**InstructPix2Pix**](./instructpix2pix) | ✅ | ✅ | - |
| [**Custom Diffusion**](./custom_diffusion) | ✅ | ✅ | - |
| [**T2I Adapters**](./t2i_adapters) | ✅ | ✅ | - |
## Community
In addition, we provide **community** examples, which are examples added and maintained by our community.
Community examples can consist of both *training* examples or *inference* pipelines.
For such examples, we are more lenient regarding the philosophy defined above and also cannot guarantee to provide maintenance for every issue.
Examples that are useful for the community, but are either not yet deemed popular or not yet following our above philosophy should go into the [community examples](https://github.com/huggingface/diffusers/tree/main/examples/community) folder. The community folder therefore includes training examples and inference pipelines.
**Note**: Community examples can be a [great first contribution](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) to show to the community how you like to use `diffusers` 🪄.
## Important note
To make sure you can successfully run the latest versions of the example scripts, you have to **install the library from source** and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash ```bash
git clone https://github.com/huggingface/diffusers git clone https://github.com/huggingface/diffusers
...@@ -77,8 +48,16 @@ cd diffusers ...@@ -77,8 +48,16 @@ cd diffusers
pip install . pip install .
``` ```
Then cd in the example folder of your choice and run Then navigate to the folder of the training script (for example, [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth)) and install the `requirements.txt` file. Some training scripts have a specific requirement file for SDXL, LoRA or Flax. If you're using one of these scripts, make sure you install its corresponding requirements file.
```bash ```bash
cd examples/dreambooth
pip install -r requirements.txt pip install -r requirements.txt
# to train SDXL with DreamBooth
pip install -r requirements_sdxl.txt
``` ```
To speedup training and reduce memory-usage, we recommend:
- using PyTorch 2.0 or higher to automatically use [scaled dot product attention](../optimization/torch2.0#scaled-dot-product-attention) during training (you don't need to make any changes to the training code)
- installing [xFormers](../optimization/xformers) to enable memory-efficient attention
\ No newline at end of file
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable Diffusion XL
<Tip warning={true}>
This script is experimental, and it's easy to overfit and run into issues like catastrophic forgetting. Try exploring different hyperparameters to get the best results on your dataset.
</Tip>
[Stable Diffusion XL (SDXL)](https://hf.co/papers/2307.01952) is a larger and more powerful iteration of the Stable Diffusion model, capable of producing higher resolution images.
SDXL's UNet is 3x larger and the model adds a second text encoder to the architecture. Depending on the hardware available to you, this can be very computationally intensive and it may not run on a consumer GPU like a Tesla T4. To help fit this larger model into memory and to speedup training, try enabling `gradient_checkpointing`, `mixed_precision`, and `gradient_accumulation_steps`. You can reduce your memory-usage even more by enabling memory-efficient attention with [xFormers](../optimization/xformers) and using [bitsandbytes'](https://github.com/TimDettmers/bitsandbytes) 8-bit optimizer.
This guide will explore the [train_text_to_image_sdxl.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py) training script to help you become more familiar with it, and how you can adapt it for your own use-case.
Before running the script, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
```bash
cd examples/text_to_image
pip install -r requirements_sdxl.txt
```
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
</Tip>
Initialize an 🤗 Accelerate environment:
```bash
accelerate config
```
To setup a default 🤗 Accelerate environment without choosing any configurations:
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
from accelerate.utils import write_basic_config
write_basic_config()
```
Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.
## Script parameters
<Tip>
The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py) and let us know if you have any questions or concerns.
</Tip>
The training script provides many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L129) function. This function provides default values for each parameter, such as the training batch size and learning rate, but you can also set your own values in the training command if you'd like.
For example, to speedup training with mixed precision using the bf16 format, add the `--mixed_precision` parameter to the training command:
```bash
accelerate launch train_text_to_image_sdxl.py \
--mixed_precision="bf16"
```
Most of the parameters are identical to the parameters in the [Text-to-image](text2image#script-parameters) training guide, so you'll focus on the parameters that are relevant to training SDXL in this guide.
- `--pretrained_vae_model_name_or_path`: path to a pretrained VAE; the SDXL VAE is known to suffer from numerical instability, so this parameter allows you to specify a better [VAE](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)
- `--proportion_empty_prompts`: the proportion of image prompts to replace with empty strings
- `--timestep_bias_strategy`: where (earlier vs. later) in the timestep to apply a bias, which can encourage the model to either learn low or high frequency details
- `--timestep_bias_multiplier`: the weight of the bias to apply to the timestep
- `--timestep_bias_begin`: the timestep to begin applying the bias
- `--timestep_bias_end`: the timestep to end applying the bias
- `--timestep_bias_portion`: the proportion of timesteps to apply the bias to
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting either `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
```bash
accelerate launch train_text_to_image_sdxl.py \
--snr_gamma=5.0
```
## Training script
The training script is also similar to the [Text-to-image](text2image#training-script) training guide, but it's been modified to support SDXL training. This guide will focus on the code that is unique to the SDXL training script.
It starts by creating functions to [tokenize the prompts](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L478) to calculate the prompt embeddings, and to compute the image embeddings with the [VAE](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L519). Next, you'll a function to [generate the timesteps weights](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L531) depending on the number of timesteps and the timestep bias strategy to apply.
Within the [`main()`](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L572) function, in addition to loading a tokenizer, the script loads a second tokenizer and text encoder because the SDXL architecture uses two of each:
```py
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False
)
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
```
The [prompt and image embeddings](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L857) are computed first and kept in memory, which isn't typically an issue for a smaller dataset, but for larger datasets it can lead to memory problems. If this is the case, you should save the pre-computed embeddings to disk separately and load them into memory during the training process (see this [PR](https://github.com/huggingface/diffusers/pull/4505) for more discussion about this topic).
```py
text_encoders = [text_encoder_one, text_encoder_two]
tokenizers = [tokenizer_one, tokenizer_two]
compute_embeddings_fn = functools.partial(
encode_prompt,
text_encoders=text_encoders,
tokenizers=tokenizers,
proportion_empty_prompts=args.proportion_empty_prompts,
caption_column=args.caption_column,
)
train_dataset = train_dataset.map(compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint)
train_dataset = train_dataset.map(
compute_vae_encodings_fn,
batched=True,
batch_size=args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps,
new_fingerprint=new_fingerprint_for_vae,
)
```
After calculating the embeddings, the text encoder, VAE, and tokenizer are deleted to free up some memory:
```py
del text_encoders, tokenizers, vae
gc.collect()
torch.cuda.empty_cache()
```
Finally, the [training loop](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/text_to_image/train_text_to_image_sdxl.py#L943) takes care of the rest. If you chose to apply a timestep bias strategy, you'll see the timestep weights are calculated and added as noise:
```py
weights = generate_timestep_weights(args, noise_scheduler.config.num_train_timesteps).to(
model_input.device
)
timesteps = torch.multinomial(weights, bsz, replacement=True).long()
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
```
If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.
## Launch the script
Once you’ve made all your changes or you’re okay with the default configuration, you’re ready to launch the training script! 🚀
Let’s train on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokémon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and the dataset (either from the Hub or a local path). You should also specify a VAE other than the SDXL VAE (either from the Hub or a local path) with `VAE_NAME` to avoid numerical instabilities.
<Tip>
To monitor training progress with Weights & Biases, add the `--report_to=wandb` parameter to the training command. You’ll also need to add the `--validation_prompt` and `--validation_epochs` to the training command to keep track of results. This can be really useful for debugging the model and viewing intermediate results.
</Tip>
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch train_text_to_image_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--pretrained_vae_model_name_or_path=$VAE_NAME \
--dataset_name=$DATASET_NAME \
--enable_xformers_memory_efficient_attention \
--resolution=512 \
--center_crop \
--random_flip \
--proportion_empty_prompts=0.2 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=10000 \
--use_8bit_adam \
--learning_rate=1e-06 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--mixed_precision="fp16" \
--report_to="wandb" \
--validation_prompt="a cute Sundar Pichai creature" \
--validation_epochs 5 \
--checkpointing_steps=5000 \
--output_dir="sdxl-pokemon-model" \
--push_to_hub
```
After you've finished training, you can use your newly trained SDXL model for inference!
<hfoptions id="inference">
<hfoption id="PyTorch">
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("path/to/your/model", torch_dtype=torch.float16).to("cuda")
prompt = "A pokemon with green eyes and red legs."
image = pipeline(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")
```
</hfoption>
<hfoption id="PyTorch XLA">
[PyTorch XLA](https://pytorch.org/xla) allows you to run PyTorch on XLA devices such as TPUs, which can be faster. The initial warmup step takes longer because the model needs to be compiled and optimized. However, subsequent calls to the pipeline on an input **with the same length** as the original prompt are much faster because it can reuse the optimized graph.
```py
from diffusers import DiffusionPipeline
import torch
import torch_xla.core.xla_model as xm
device = xm.xla_device()
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to(device)
prompt = "A pokemon with green eyes and red legs."
start = time()
image = pipeline(prompt, num_inference_steps=inference_steps).images[0]
print(f'Compilation time is {time()-start} sec')
image.save("pokemon.png")
start = time()
image = pipeline(prompt, num_inference_steps=inference_steps).images[0]
print(f'Inference time is {time()-start} sec after compilation')
```
</hfoption>
</hfoptions>
## Next steps
Congratulations on training a SDXL model! To learn more about how to use your new model, the following guides may be helpful:
- Read the [Stable Diffusion XL](../using-diffusers/sdxl) guide to learn how to use it for a variety of different tasks (text-to-image, image-to-image, inpainting), how to use it's refiner model, and the different types of micro-conditionings.
- Check out the [DreamBooth](dreambooth) and [LoRA](lora) training guides to learn how to train a personalized SDXL model with just a few example images. These two training techniques can even be combined!
\ No newline at end of file
...@@ -10,67 +10,167 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o ...@@ -10,67 +10,167 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License. specific language governing permissions and limitations under the License.
--> -->
# T2I-Adapters for Stable Diffusion XL (SDXL) # T2I-Adapter
The `train_t2i_adapter_sdxl.py` script (as shown below) shows how to implement the [T2I-Adapter training procedure](https://hf.co/papers/2302.08453) for [Stable Diffusion XL](https://huggingface.co/papers/2307.01952). [T2I-Adapter]((https://hf.co/papers/2302.08453)) is a lightweight adapter model that provides an additional conditioning input image (line art, canny, sketch, depth, pose) to better control image generation. It is similar to a ControlNet, but it is a lot smaller (~77M parameters and ~300MB file size) because its only inserts weights into the UNet instead of copying and training it.
## Running locally with PyTorch The T2I-Adapter is only available for training with the Stable Diffusion XL (SDXL) model.
### Installing the dependencies This guide will explore the [train_t2i_adapter_sdxl.py](https://github.com/huggingface/diffusers/blob/main/examples/t2i_adapter/train_t2i_adapter_sdxl.py) training script to help you become familiar with it, and how you can adapt it for your own use-case.
Before running the scripts, make sure to install the library's training dependencies: Before running the script, make sure you install the library from source:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash ```bash
git clone https://github.com/huggingface/diffusers git clone https://github.com/huggingface/diffusers
cd diffusers cd diffusers
pip install -e . pip install .
``` ```
Then cd in the `examples/t2i_adapter` folder and run Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
```bash ```bash
pip install -r requirements_sdxl.txt cd examples/t2i_adapter
pip install -r requirements.txt
``` ```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: <Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
</Tip>
Initialize an 🤗 Accelerate environment:
```bash ```bash
accelerate config accelerate config
``` ```
Or for a default accelerate configuration without answering questions about your environment To setup a default 🤗 Accelerate environment without choosing any configurations:
```bash ```bash
accelerate config default accelerate config default
``` ```
Or if your environment doesn't support an interactive shell (e.g., a notebook) Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```python ```bash
from accelerate.utils import write_basic_config from accelerate.utils import write_basic_config
write_basic_config() write_basic_config()
``` ```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.
## Circle filling dataset <Tip>
The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script. The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/t2i_adapter/train_t2i_adapter_sdxl.py) and let us know if you have any questions or concerns.
## Training </Tip>
Our training examples use two test conditioning images. They can be downloaded by running ## Script parameters
```sh The training script provides many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L233) function. It provides default values for each parameter, such as the training batch size and learning rate, but you can also set your own values in the training command if you'd like.
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png
For example, to activate gradient accumulation, add the `--gradient_accumulation_steps` parameter to the training command:
```bash
accelerate launch train_t2i_adapter_sdxl.py \
----gradient_accumulation_steps=4
```
Many of the basic and important parameters are described in the [Text-to-image](text2image#script-parameters) training guide, so this guide just focuses on the relevant T2I-Adapter parameters:
- `--pretrained_vae_model_name_or_path`: path to a pretrained VAE; the SDXL VAE is known to suffer from numerical instability, so this parameter allows you to specify a better [VAE](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)
- `--crops_coords_top_left_h` and `--crops_coords_top_left_w`: height and width coordinates to include in SDXL's crop coordinate embeddings
- `--conditioning_image_column`: the column of the conditioning images in the dataset
- `--proportion_empty_prompts`: the proportion of image prompts to replace with empty strings
## Training script
As with the script parameters, a walkthrough of the training script is provided in the [Text-to-image](text2image#training-script) training guide. Instead, this guide takes a look at the T2I-Adapter relevant parts of the script.
The training script begins by preparing the dataset. This incudes [tokenizing](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L674) the prompt and [applying transforms](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L714) to the images and conditioning images.
```py
conditioning_image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
]
)
```
Within the [`main()`](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L770) function, the T2I-Adapter is either loaded from a pretrained adapter or it is randomly initialized:
```py
if args.adapter_model_name_or_path:
logger.info("Loading existing adapter weights.")
t2iadapter = T2IAdapter.from_pretrained(args.adapter_model_name_or_path)
else:
logger.info("Initializing t2iadapter weights.")
t2iadapter = T2IAdapter(
in_channels=3,
channels=(320, 640, 1280, 1280),
num_res_blocks=2,
downscale_factor=16,
adapter_type="full_adapter_xl",
)
```
The [optimizer](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L952) is initialized for the T2I-Adapter parameters:
```py
params_to_optimize = t2iadapter.parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
```
Lastly, in the [training loop](https://github.com/huggingface/diffusers/blob/aab6de22c33cc01fb7bc81c0807d6109e2c998c9/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L1086), the adapter conditioning image and the text embeddings are passed to the UNet to predict the noise residual:
```py
t2iadapter_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
down_block_additional_residuals = t2iadapter(t2iadapter_image)
down_block_additional_residuals = [
sample.to(dtype=weight_dtype) for sample in down_block_additional_residuals
]
model_pred = unet(
inp_noisy_latents,
timesteps,
encoder_hidden_states=batch["prompt_ids"],
added_cond_kwargs=batch["unet_added_conditions"],
down_block_additional_residuals=down_block_additional_residuals,
).sample
```
If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.
## Launch the script
Now you’re ready to launch the training script! 🚀
For this example training, you'll use the [fusing/fill50k](https://huggingface.co/datasets/fusing/fill50k) dataset. You can also create and use your own dataset if you want (see the [Create a dataset for training](https://moon-ci-docs.huggingface.co/docs/diffusers/pr_5512/en/training/create_dataset) guide).
Set the environment variable `MODEL_DIR` to a model id on the Hub or a path to a local model and `OUTPUT_DIR` to where you want to save the model.
Download the following images to condition your training with:
```bash
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
``` ```
Then run `huggingface-cli login` to log into your Hugging Face account. This is needed to be able to push the trained T2IAdapter parameters to Hugging Face Hub. <Tip>
To monitor training progress with Weights & Biases, add the `--report_to=wandb` parameter to the training command. You'll also need to add the `--validation_image`, `--validation_prompt`, and `--validation_steps` to the training command to keep track of results. This can be really useful for debugging the model and viewing intermediate results.
</Tip>
```bash ```bash
export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0" export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0"
...@@ -94,50 +194,34 @@ accelerate launch train_t2i_adapter_sdxl.py \ ...@@ -94,50 +194,34 @@ accelerate launch train_t2i_adapter_sdxl.py \
--push_to_hub --push_to_hub
``` ```
To better track our training experiments, we're using the following flags in the command above: Once training is complete, you can use your T2I-Adapter for inference:
* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`. ```py
* `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Our experiments were conducted on a single 40GB A100 GPU.
### Inference
Once training is done, we can perform inference like so:
```python
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteSchedulerTest from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteSchedulerTest
from diffusers.utils import load_image from diffusers.utils import load_image
import torch import torch
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" adapter = T2IAdapter.from_pretrained("path/to/adapter", torch_dtype=torch.float16)
adapter_path = "path to adapter" pipeline = StableDiffusionXLAdapterPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", adapter=adapter, torch_dtype=torch.float16
adapter = T2IAdapter.from_pretrained(adapter_path, torch_dtype=torch.float16)
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
base_model_path, adapter=adapter, torch_dtype=torch.float16
) )
# speed up diffusion process with faster scheduler and memory optimization pipeline.scheduler = EulerAncestralDiscreteSchedulerTest.from_config(pipe.scheduler.config)
pipe.scheduler = EulerAncestralDiscreteSchedulerTest.from_config(pipe.scheduler.config) pipeline.enable_xformers_memory_efficient_attention()
# remove following line if xformers is not installed or when using Torch 2.0. pipeline.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
# memory optimization.
pipe.enable_model_cpu_offload()
control_image = load_image("./conditioning_image_1.png") control_image = load_image("./conditioning_image_1.png")
prompt = "pale golden rod circle with old lace background" prompt = "pale golden rod circle with old lace background"
# generate image
generator = torch.manual_seed(0) generator = torch.manual_seed(0)
image = pipe( image = pipeline(
prompt, num_inference_steps=20, generator=generator, image=control_image prompt, image=control_image, generator=generator
).images[0] ).images[0]
image.save("./output.png") image.save("./output.png")
``` ```
## Notes ## Next steps
### Specifying a better VAE Congratulations on training a T2I-Adapter model! 🎉 To learn more:
SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)). - Read the [Efficient Controllable Generation for SDXL with T2I-Adapters](https://www.cs.cmu.edu/~custom-diffusion/) blog post to learn more details about the experimental results from the T2I-Adapter team.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment