Commit b02d0d6b authored by Patrick von Platen's avatar Patrick von Platen
Browse files

merge

parents 49257b4a 02cdd683
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import torch
from torch import nn
from ..configuration_utils import ConfigMixin
SAMPLING_CONFIG_NAME = "scheduler_config.json"
def linear_beta_schedule(timesteps, beta_start, beta_end):
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas, dtype=np.float64)
class ClassifierFreeGuidanceScheduler(nn.Module, ConfigMixin):
config_name = SAMPLING_CONFIG_NAME
def __init__(
self,
timesteps=1000,
beta_schedule="squaredcos_cap_v2",
):
super().__init__()
self.register(
timesteps=timesteps,
beta_schedule=beta_schedule,
)
self.num_timesteps = int(timesteps)
if beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
self.betas = betas_for_alpha_bar(
timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = self.betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = self.betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)
def sample_noise(self, shape, device, generator=None):
# always sample on CPU to be deterministic
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
...@@ -16,35 +16,12 @@ import math ...@@ -16,35 +16,12 @@ import math
from torch import nn from torch import nn
from ..configuration_utils import ConfigMixin from ..configuration_utils import ConfigMixin
from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar
SAMPLING_CONFIG_NAME = "scheduler_config.json" SAMPLING_CONFIG_NAME = "scheduler_config.json"
def linear_beta_schedule(timesteps, beta_start, beta_end):
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float64)
class GaussianDDPMScheduler(nn.Module, ConfigMixin): class GaussianDDPMScheduler(nn.Module, ConfigMixin):
config_name = SAMPLING_CONFIG_NAME config_name = SAMPLING_CONFIG_NAME
......
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from torch import nn
from ..configuration_utils import ConfigMixin
from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar
SAMPLING_CONFIG_NAME = "scheduler_config.json"
class GlideDDIMScheduler(nn.Module, ConfigMixin):
config_name = SAMPLING_CONFIG_NAME
def __init__(
self,
timesteps=1000,
beta_schedule="linear",
variance_type="fixed_large"
):
super().__init__()
self.register(
timesteps=timesteps,
beta_schedule=beta_schedule,
)
self.num_timesteps = int(timesteps)
if beta_schedule == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = 1000 / self.num_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
if variance_type == "fixed_small":
log_variance = torch.log(variance.clamp(min=1e-20))
elif variance_type == "fixed_large":
log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
self.register_buffer("betas", betas.to(torch.float32))
self.register_buffer("alphas", alphas.to(torch.float32))
self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))
self.register_buffer("log_variance", log_variance.to(torch.float32))
def get_alpha(self, time_step):
return self.alphas[time_step]
def get_beta(self, time_step):
return self.betas[time_step]
def get_alpha_prod(self, time_step):
if time_step < 0:
return torch.tensor(1.0)
return self.alphas_cumprod[time_step]
def sample_variance(self, time_step, shape, device, generator=None):
variance = self.log_variance[time_step]
nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :]
noise = self.sample_noise(shape, device=device, generator=generator)
sampled_variance = nonzero_mask * (0.5 * variance).exp()
sampled_variance = sampled_variance * noise
return sampled_variance
def sample_noise(self, shape, device, generator=None):
# always sample on CPU to be deterministic
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
\ No newline at end of file
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def linear_beta_schedule(timesteps, beta_start, beta_end):
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float64)
...@@ -26,6 +26,7 @@ from diffusers import GaussianDDPMScheduler, UNetModel ...@@ -26,6 +26,7 @@ from diffusers import GaussianDDPMScheduler, UNetModel
from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.configuration_utils import ConfigMixin from diffusers.configuration_utils import ConfigMixin
from models.vision.ddpm.modeling_ddpm import DDPM from models.vision.ddpm.modeling_ddpm import DDPM
from models.vision.ddim.modeling_ddim import DDIM
global_rng = random.Random() global_rng = random.Random()
...@@ -245,6 +246,7 @@ class SamplerTesterMixin(unittest.TestCase): ...@@ -245,6 +246,7 @@ class SamplerTesterMixin(unittest.TestCase):
class PipelineTesterMixin(unittest.TestCase): class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self): def test_from_pretrained_save_pretrained(self):
# 1. Load models # 1. Load models
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
...@@ -281,3 +283,31 @@ class PipelineTesterMixin(unittest.TestCase): ...@@ -281,3 +283,31 @@ class PipelineTesterMixin(unittest.TestCase):
new_image = ddpm_from_hub(generator=generator) new_image = ddpm_from_hub(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_ddpm_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_id)
image = ddpm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_ddim_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
ddim = DDIM.from_pretrained(model_id)
image = ddim(generator=generator, eta=0.0)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor([-0.7688, -0.7690, -0.7597, -0.7660, -0.7713, -0.7531, -0.7009, -0.7098, -0.7350])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment