Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
a69ebe55
Unverified
Commit
a69ebe55
authored
Oct 26, 2023
by
Patrick von Platen
Committed by
GitHub
Oct 26, 2023
Browse files
[Tests] Speed up expert of mixture tests (#5533)
* [Tests] Speed up expert of mixture tests * make style
parent
ce7f3344
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
165 additions
and
2 deletions
+165
-2
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py
...pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py
+103
-1
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
...s/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
+62
-1
No files found.
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py
View file @
a69ebe55
...
@@ -32,7 +32,7 @@ from diffusers import (
...
@@ -32,7 +32,7 @@ from diffusers import (
UNet2DConditionModel
,
UNet2DConditionModel
,
UniPCMultistepScheduler
,
UniPCMultistepScheduler
,
)
)
from
diffusers.utils.testing_utils
import
enable_full_determinism
,
require_torch_gpu
,
torch_device
from
diffusers.utils.testing_utils
import
enable_full_determinism
,
require_torch_gpu
,
slow
,
torch_device
from
..pipeline_params
import
TEXT_TO_IMAGE_BATCH_PARAMS
,
TEXT_TO_IMAGE_IMAGE_PARAMS
,
TEXT_TO_IMAGE_PARAMS
from
..pipeline_params
import
TEXT_TO_IMAGE_BATCH_PARAMS
,
TEXT_TO_IMAGE_IMAGE_PARAMS
,
TEXT_TO_IMAGE_PARAMS
from
..test_pipelines_common
import
PipelineLatentTesterMixin
,
PipelineTesterMixin
,
SDXLOptionalComponentsTesterMixin
from
..test_pipelines_common
import
PipelineLatentTesterMixin
,
PipelineTesterMixin
,
SDXLOptionalComponentsTesterMixin
...
@@ -301,6 +301,107 @@ class StableDiffusionXLPipelineFastTests(
...
@@ -301,6 +301,107 @@ class StableDiffusionXLPipelineFastTests(
# make sure that it's equal
# make sure that it's equal
assert
np
.
abs
(
image_slice_1
.
flatten
()
-
image_slice_2
.
flatten
()).
max
()
<
1e-4
assert
np
.
abs
(
image_slice_1
.
flatten
()
-
image_slice_2
.
flatten
()).
max
()
<
1e-4
def
test_stable_diffusion_two_xl_mixture_of_denoiser_fast
(
self
):
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
.
unet
.
set_default_attn_processor
()
pipe_2
=
StableDiffusionXLImg2ImgPipeline
(
**
components
).
to
(
torch_device
)
pipe_2
.
unet
.
set_default_attn_processor
()
def
assert_run_mixture
(
num_steps
,
split
,
scheduler_cls_orig
,
expected_tss
,
num_train_timesteps
=
pipe_1
.
scheduler
.
config
.
num_train_timesteps
,
):
inputs
=
self
.
get_dummy_inputs
(
torch_device
)
inputs
[
"num_inference_steps"
]
=
num_steps
class
scheduler_cls
(
scheduler_cls_orig
):
pass
pipe_1
.
scheduler
=
scheduler_cls
.
from_config
(
pipe_1
.
scheduler
.
config
)
pipe_2
.
scheduler
=
scheduler_cls
.
from_config
(
pipe_2
.
scheduler
.
config
)
# Let's retrieve the number of timesteps we want to use
pipe_1
.
scheduler
.
set_timesteps
(
num_steps
)
expected_steps
=
pipe_1
.
scheduler
.
timesteps
.
tolist
()
if
pipe_1
.
scheduler
.
order
==
2
:
expected_steps_1
=
list
(
filter
(
lambda
ts
:
ts
>=
split
,
expected_tss
))
expected_steps_2
=
expected_steps_1
[
-
1
:]
+
list
(
filter
(
lambda
ts
:
ts
<
split
,
expected_tss
))
expected_steps
=
expected_steps_1
+
expected_steps_2
else
:
expected_steps_1
=
list
(
filter
(
lambda
ts
:
ts
>=
split
,
expected_tss
))
expected_steps_2
=
list
(
filter
(
lambda
ts
:
ts
<
split
,
expected_tss
))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps
=
[]
old_step
=
copy
.
copy
(
scheduler_cls
.
step
)
def
new_step
(
self
,
*
args
,
**
kwargs
):
done_steps
.
append
(
args
[
1
].
cpu
().
item
())
# args[1] is always the passed `t`
return
old_step
(
self
,
*
args
,
**
kwargs
)
scheduler_cls
.
step
=
new_step
inputs_1
=
{
**
inputs
,
**
{
"denoising_end"
:
1.0
-
(
split
/
num_train_timesteps
),
"output_type"
:
"latent"
,
},
}
latents
=
pipe_1
(
**
inputs_1
).
images
[
0
]
assert
expected_steps_1
==
done_steps
,
f
"Failure with
{
scheduler_cls
.
__name__
}
and
{
num_steps
}
and
{
split
}
"
inputs_2
=
{
**
inputs
,
**
{
"denoising_start"
:
1.0
-
(
split
/
num_train_timesteps
),
"image"
:
latents
,
},
}
pipe_2
(
**
inputs_2
).
images
[
0
]
assert
expected_steps_2
==
done_steps
[
len
(
expected_steps_1
)
:]
assert
expected_steps
==
done_steps
,
f
"Failure with
{
scheduler_cls
.
__name__
}
and
{
num_steps
}
and
{
split
}
"
steps
=
10
for
split
in
[
300
,
700
]:
for
scheduler_cls_timesteps
in
[
(
EulerDiscreteScheduler
,
[
901
,
801
,
701
,
601
,
501
,
401
,
301
,
201
,
101
,
1
]),
(
HeunDiscreteScheduler
,
[
901.0
,
801.0
,
801.0
,
701.0
,
701.0
,
601.0
,
601.0
,
501.0
,
501.0
,
401.0
,
401.0
,
301.0
,
301.0
,
201.0
,
201.0
,
101.0
,
101.0
,
1.0
,
1.0
,
],
),
]:
assert_run_mixture
(
steps
,
split
,
scheduler_cls_timesteps
[
0
],
scheduler_cls_timesteps
[
1
])
@
slow
def
test_stable_diffusion_two_xl_mixture_of_denoiser
(
self
):
def
test_stable_diffusion_two_xl_mixture_of_denoiser
(
self
):
components
=
self
.
get_dummy_components
()
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
=
StableDiffusionXLPipeline
(
**
components
).
to
(
torch_device
)
...
@@ -584,6 +685,7 @@ class StableDiffusionXLPipelineFastTests(
...
@@ -584,6 +685,7 @@ class StableDiffusionXLPipelineFastTests(
]:
]:
assert_run_mixture
(
steps
,
split
,
scheduler_cls_timesteps
[
0
],
scheduler_cls_timesteps
[
1
])
assert_run_mixture
(
steps
,
split
,
scheduler_cls_timesteps
[
0
],
scheduler_cls_timesteps
[
1
])
@
slow
def
test_stable_diffusion_three_xl_mixture_of_denoiser
(
self
):
def
test_stable_diffusion_three_xl_mixture_of_denoiser
(
self
):
components
=
self
.
get_dummy_components
()
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
=
StableDiffusionXLPipeline
(
**
components
).
to
(
torch_device
)
...
...
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
View file @
a69ebe55
...
@@ -32,7 +32,7 @@ from diffusers import (
...
@@ -32,7 +32,7 @@ from diffusers import (
UNet2DConditionModel
,
UNet2DConditionModel
,
UniPCMultistepScheduler
,
UniPCMultistepScheduler
,
)
)
from
diffusers.utils.testing_utils
import
enable_full_determinism
,
floats_tensor
,
require_torch_gpu
,
torch_device
from
diffusers.utils.testing_utils
import
enable_full_determinism
,
floats_tensor
,
require_torch_gpu
,
slow
,
torch_device
from
..pipeline_params
import
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from
..pipeline_params
import
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from
..test_pipelines_common
import
PipelineLatentTesterMixin
,
PipelineTesterMixin
from
..test_pipelines_common
import
PipelineLatentTesterMixin
,
PipelineTesterMixin
...
@@ -294,6 +294,66 @@ class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, Pipel
...
@@ -294,6 +294,66 @@ class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, Pipel
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_two_xl_mixture_of_denoiser_fast
(
self
):
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
.
unet
.
set_default_attn_processor
()
pipe_2
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
pipe_2
.
unet
.
set_default_attn_processor
()
def
assert_run_mixture
(
num_steps
,
split
,
scheduler_cls_orig
,
num_train_timesteps
=
pipe_1
.
scheduler
.
config
.
num_train_timesteps
):
inputs
=
self
.
get_dummy_inputs
(
torch_device
)
inputs
[
"num_inference_steps"
]
=
num_steps
class
scheduler_cls
(
scheduler_cls_orig
):
pass
pipe_1
.
scheduler
=
scheduler_cls
.
from_config
(
pipe_1
.
scheduler
.
config
)
pipe_2
.
scheduler
=
scheduler_cls
.
from_config
(
pipe_2
.
scheduler
.
config
)
# Let's retrieve the number of timesteps we want to use
pipe_1
.
scheduler
.
set_timesteps
(
num_steps
)
expected_steps
=
pipe_1
.
scheduler
.
timesteps
.
tolist
()
split_ts
=
num_train_timesteps
-
int
(
round
(
num_train_timesteps
*
split
))
if
pipe_1
.
scheduler
.
order
==
2
:
expected_steps_1
=
list
(
filter
(
lambda
ts
:
ts
>=
split_ts
,
expected_steps
))
expected_steps_2
=
expected_steps_1
[
-
1
:]
+
list
(
filter
(
lambda
ts
:
ts
<
split_ts
,
expected_steps
))
expected_steps
=
expected_steps_1
+
expected_steps_2
else
:
expected_steps_1
=
list
(
filter
(
lambda
ts
:
ts
>=
split_ts
,
expected_steps
))
expected_steps_2
=
list
(
filter
(
lambda
ts
:
ts
<
split_ts
,
expected_steps
))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps
=
[]
old_step
=
copy
.
copy
(
scheduler_cls
.
step
)
def
new_step
(
self
,
*
args
,
**
kwargs
):
done_steps
.
append
(
args
[
1
].
cpu
().
item
())
# args[1] is always the passed `t`
return
old_step
(
self
,
*
args
,
**
kwargs
)
scheduler_cls
.
step
=
new_step
inputs_1
=
{
**
inputs
,
**
{
"denoising_end"
:
split
,
"output_type"
:
"latent"
}}
latents
=
pipe_1
(
**
inputs_1
).
images
[
0
]
assert
expected_steps_1
==
done_steps
,
f
"Failure with
{
scheduler_cls
.
__name__
}
and
{
num_steps
}
and
{
split
}
"
inputs_2
=
{
**
inputs
,
**
{
"denoising_start"
:
split
,
"image"
:
latents
}}
pipe_2
(
**
inputs_2
).
images
[
0
]
assert
expected_steps_2
==
done_steps
[
len
(
expected_steps_1
)
:]
assert
expected_steps
==
done_steps
,
f
"Failure with
{
scheduler_cls
.
__name__
}
and
{
num_steps
}
and
{
split
}
"
for
steps
in
[
7
,
20
]:
assert_run_mixture
(
steps
,
0.33
,
EulerDiscreteScheduler
)
assert_run_mixture
(
steps
,
0.33
,
HeunDiscreteScheduler
)
@
slow
def
test_stable_diffusion_two_xl_mixture_of_denoiser
(
self
):
def
test_stable_diffusion_two_xl_mixture_of_denoiser
(
self
):
components
=
self
.
get_dummy_components
()
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
...
@@ -360,6 +420,7 @@ class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, Pipel
...
@@ -360,6 +420,7 @@ class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, Pipel
]:
]:
assert_run_mixture
(
steps
,
split
,
scheduler_cls
)
assert_run_mixture
(
steps
,
split
,
scheduler_cls
)
@
slow
def
test_stable_diffusion_three_xl_mixture_of_denoiser
(
self
):
def
test_stable_diffusion_three_xl_mixture_of_denoiser
(
self
):
components
=
self
.
get_dummy_components
()
components
=
self
.
get_dummy_components
()
pipe_1
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
pipe_1
=
StableDiffusionXLInpaintPipeline
(
**
components
).
to
(
torch_device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment