Unverified Commit a674914f authored by Yao Matrix's avatar Yao Matrix Committed by GitHub
Browse files

enable semantic diffusion and stable diffusion panorama cases on XPU (#11459)


Signed-off-by: default avatarYao Matrix <matrix.yao@intel.com>
parent ec3d5828
......@@ -25,11 +25,11 @@ from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
nightly,
require_accelerator,
require_torch_gpu,
require_torch_accelerator,
torch_device,
)
......@@ -42,13 +42,13 @@ class SafeDiffusionPipelineFastTests(unittest.TestCase):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
@property
def dummy_image(self):
......@@ -238,7 +238,7 @@ class SafeDiffusionPipelineFastTests(unittest.TestCase):
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
@require_accelerator
@require_torch_accelerator
def test_semantic_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
......@@ -272,22 +272,21 @@ class SafeDiffusionPipelineFastTests(unittest.TestCase):
@nightly
@require_torch_gpu
@require_torch_accelerator
class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
def test_positive_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
......@@ -370,7 +369,6 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_negative_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
......@@ -453,7 +451,6 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_multi_cond_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
......@@ -536,7 +533,6 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_guidance_fp16(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
)
......
......@@ -29,7 +29,17 @@ from diffusers import (
StableDiffusionPanoramaPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device
from diffusers.utils.testing_utils import (
backend_empty_cache,
backend_max_memory_allocated,
backend_reset_max_memory_allocated,
backend_reset_peak_memory_stats,
enable_full_determinism,
nightly,
require_torch_accelerator,
skip_mps,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
......@@ -267,17 +277,17 @@ class StableDiffusionPanoramaPipelineFastTests(
@nightly
@require_torch_gpu
@require_torch_accelerator
class StableDiffusionPanoramaNightlyTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)
def get_inputs(self, seed=0):
generator = torch.manual_seed(seed)
......@@ -415,9 +425,9 @@ class StableDiffusionPanoramaNightlyTests(unittest.TestCase):
assert number_of_steps == 3
def test_stable_diffusion_panorama_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
backend_empty_cache(torch_device)
backend_reset_max_memory_allocated(torch_device)
backend_reset_peak_memory_stats(torch_device)
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
......@@ -429,6 +439,6 @@ class StableDiffusionPanoramaNightlyTests(unittest.TestCase):
inputs = self.get_inputs()
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
mem_bytes = backend_max_memory_allocated(torch_device)
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment