Unverified Commit a0c54828 authored by Dhruv Nair's avatar Dhruv Nair Committed by GitHub
Browse files

Deprecate Pipelines (#6169)



* deprecate pipe

* make style

* update

* add deprecation message

* format

* remove tests for deprecated pipelines

* remove deprecation message

* make style

* fix copies

* clean up

* clean

* clean

* clean

* clean up

* clean up

* clean up toctree

* clean up

---------
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 8d891e6e
......@@ -19,14 +19,14 @@ import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...models.attention_processor import FusedAttnProcessor2_0
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
from ....configuration_utils import FrozenDict
from ....image_processor import PipelineImageInput, VaeImageProcessor
from ....loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ....models.attention_processor import FusedAttnProcessor2_0
from ....models.lora import adjust_lora_scale_text_encoder
from ....schedulers import KarrasDiffusionSchedulers
from ....utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
......@@ -34,9 +34,9 @@ from ...utils import (
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline
from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_output import AltDiffusionPipelineOutput
......@@ -119,7 +119,6 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
class AltDiffusionPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
......
......@@ -21,14 +21,14 @@ import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...models.attention_processor import FusedAttnProcessor2_0
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
from ....configuration_utils import FrozenDict
from ....image_processor import PipelineImageInput, VaeImageProcessor
from ....loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ....models.attention_processor import FusedAttnProcessor2_0
from ....models.lora import adjust_lora_scale_text_encoder
from ....schedulers import KarrasDiffusionSchedulers
from ....utils import (
PIL_INTERPOLATION,
USE_PEFT_BACKEND,
deprecate,
......@@ -37,9 +37,9 @@ from ...utils import (
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline
from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_output import AltDiffusionPipelineOutput
......@@ -159,7 +159,6 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
class AltDiffusionImg2ImgPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
):
......
......@@ -4,7 +4,7 @@ from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...utils import (
from ....utils import (
BaseOutput,
)
......
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
_import_structure = {
......
......@@ -15,8 +15,8 @@
import numpy as np # noqa: E402
from ...configuration_utils import ConfigMixin, register_to_config
from ...schedulers.scheduling_utils import SchedulerMixin
from ....configuration_utils import ConfigMixin, register_to_config
from ....schedulers.scheduling_utils import SchedulerMixin
try:
......
......@@ -20,10 +20,10 @@ import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from ....models import AutoencoderKL, UNet2DConditionModel
from ....schedulers import DDIMScheduler, DDPMScheduler
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
......
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
_import_structure = {"pipeline_latent_diffusion_uncond": ["LDMPipeline"]}
......
......@@ -17,10 +17,10 @@ from typing import List, Optional, Tuple, Union
import torch
from ...models import UNet2DModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ....models import UNet2DModel, VQModel
from ....schedulers import DDIMScheduler
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class LDMPipeline(DiffusionPipeline):
......
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
_import_structure = {"pipeline_pndm": ["PNDMPipeline"]}
......
......@@ -17,10 +17,10 @@ from typing import List, Optional, Tuple, Union
import torch
from ...models import UNet2DModel
from ...schedulers import PNDMScheduler
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ....models import UNet2DModel
from ....schedulers import PNDMScheduler
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class PNDMPipeline(DiffusionPipeline):
......
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
_import_structure = {"pipeline_repaint": ["RePaintPipeline"]}
......
......@@ -19,11 +19,11 @@ import numpy as np
import PIL.Image
import torch
from ...models import UNet2DModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, deprecate, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ....models import UNet2DModel
from ....schedulers import RePaintScheduler
from ....utils import PIL_INTERPOLATION, deprecate, logging
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule
_import_structure = {"pipeline_score_sde_ve": ["ScoreSdeVePipeline"]}
......
......@@ -16,10 +16,10 @@ from typing import List, Optional, Tuple, Union
import torch
from ...models import UNet2DModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ....models import UNet2DModel
from ....schedulers import ScoreSdeVeScheduler
from ....utils.torch_utils import randn_tensor
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class ScoreSdeVePipeline(DiffusionPipeline):
......
# flake8: noqa
from typing import TYPE_CHECKING
from ...utils import DIFFUSERS_SLOW_IMPORT
from ...utils import (
from ....utils import (
DIFFUSERS_SLOW_IMPORT,
_LazyModule,
is_note_seq_available,
OptionalDependencyNotAvailable,
......@@ -17,7 +17,7 @@ try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
from ....utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
......@@ -32,7 +32,7 @@ try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_transformers_and_torch_and_note_seq_objects
from ....utils import dummy_transformers_and_torch_and_note_seq_objects
_dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
else:
......@@ -45,7 +45,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
from ....utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_spectrogram_diffusion import SpectrogramDiffusionPipeline
from .pipeline_spectrogram_diffusion import SpectrogramContEncoder
......@@ -56,7 +56,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import *
from ....utils.dummy_transformers_and_torch_and_note_seq_objects import *
else:
from .midi_utils import MidiProcessor
......
......@@ -22,8 +22,8 @@ from transformers.models.t5.modeling_t5 import (
T5LayerNorm,
)
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
from ....configuration_utils import ConfigMixin, register_to_config
from ....models import ModelMixin
class SpectrogramContEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
......
......@@ -22,7 +22,7 @@ import numpy as np
import torch
import torch.nn.functional as F
from ...utils import is_note_seq_available
from ....utils import is_note_seq_available
from .pipeline_spectrogram_diffusion import TARGET_FEATURE_LENGTH
......
......@@ -18,8 +18,8 @@ import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
from ....configuration_utils import ConfigMixin, register_to_config
from ....models import ModelMixin
class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
......
......@@ -19,16 +19,16 @@ from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import T5FilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging
from ...utils.torch_utils import randn_tensor
from ....models import T5FilmDecoder
from ....schedulers import DDPMScheduler
from ....utils import is_onnx_available, logging
from ....utils.torch_utils import randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ...onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continuous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
......
from typing import TYPE_CHECKING
from ....utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ....utils import dummy_torch_and_transformers_objects
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_cycle_diffusion"] = ["CycleDiffusionPipeline"]
_import_structure["pipeline_stable_diffusion_inpaint_legacy"] = ["StableDiffusionInpaintPipelineLegacy"]
_import_structure["pipeline_stable_diffusion_model_editing"] = ["StableDiffusionModelEditingPipeline"]
_import_structure["pipeline_stable_diffusion_paradigms"] = ["StableDiffusionParadigmsPipeline"]
_import_structure["pipeline_stable_diffusion_pix2pix_zero"] = ["StableDiffusionPix2PixZeroPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ....utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_pix2pix_zero import StableDiffusionPix2PixZeroPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment