Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
90250d9e
Unverified
Commit
90250d9e
authored
Apr 19, 2024
by
Dhruv Nair
Committed by
GitHub
Apr 18, 2024
Browse files
Cast height, width to int inside prepare latents (#7691)
update
parent
e5674015
Changes
63
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
132 additions
and
22 deletions
+132
-22
examples/community/composable_stable_diffusion.py
examples/community/composable_stable_diffusion.py
+6
-1
examples/community/gluegen.py
examples/community/gluegen.py
+6
-1
examples/community/instaflow_one_step.py
examples/community/instaflow_one_step.py
+6
-1
examples/community/ip_adapter_face_id.py
examples/community/ip_adapter_face_id.py
+6
-1
examples/community/latent_consistency_img2img.py
examples/community/latent_consistency_img2img.py
+6
-1
examples/community/latent_consistency_interpolate.py
examples/community/latent_consistency_interpolate.py
+6
-1
examples/community/latent_consistency_txt2img.py
examples/community/latent_consistency_txt2img.py
+6
-1
examples/community/lpw_stable_diffusion.py
examples/community/lpw_stable_diffusion.py
+6
-1
examples/community/lpw_stable_diffusion_xl.py
examples/community/lpw_stable_diffusion_xl.py
+12
-2
examples/community/pipeline_demofusion_sdxl.py
examples/community/pipeline_demofusion_sdxl.py
+6
-1
examples/community/pipeline_sdxl_style_aligned.py
examples/community/pipeline_sdxl_style_aligned.py
+12
-2
examples/community/pipeline_stable_diffusion_pag.py
examples/community/pipeline_stable_diffusion_pag.py
+6
-1
examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py
...munity/pipeline_stable_diffusion_xl_controlnet_adapter.py
+6
-1
examples/community/pipeline_stable_diffusion_xl_ipex.py
examples/community/pipeline_stable_diffusion_xl_ipex.py
+6
-1
examples/community/pipeline_zero1to3.py
examples/community/pipeline_zero1to3.py
+6
-1
examples/community/stable_diffusion_controlnet_inpaint.py
examples/community/stable_diffusion_controlnet_inpaint.py
+6
-1
examples/community/stable_diffusion_ipex.py
examples/community/stable_diffusion_ipex.py
+6
-1
examples/community/stable_diffusion_reference.py
examples/community/stable_diffusion_reference.py
+6
-1
examples/research_projects/promptdiffusion/pipeline_prompt_diffusion.py
...rch_projects/promptdiffusion/pipeline_prompt_diffusion.py
+6
-1
examples/research_projects/rdm/pipeline_rdm.py
examples/research_projects/rdm/pipeline_rdm.py
+6
-1
No files found.
examples/community/composable_stable_diffusion.py
View file @
90250d9e
...
@@ -321,7 +321,12 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
...
@@ -321,7 +321,12 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
latents
is
None
:
if
latents
is
None
:
if
device
.
type
==
"mps"
:
if
device
.
type
==
"mps"
:
# randn does not work reproducibly on mps
# randn does not work reproducibly on mps
...
...
examples/community/gluegen.py
View file @
90250d9e
...
@@ -500,7 +500,12 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, Lo
...
@@ -500,7 +500,12 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, Lo
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/instaflow_one_step.py
View file @
90250d9e
...
@@ -468,7 +468,12 @@ class InstaFlowPipeline(
...
@@ -468,7 +468,12 @@ class InstaFlowPipeline(
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/ip_adapter_face_id.py
View file @
90250d9e
...
@@ -753,7 +753,12 @@ class IPAdapterFaceIDStableDiffusionPipeline(
...
@@ -753,7 +753,12 @@ class IPAdapterFaceIDStableDiffusionPipeline(
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/latent_consistency_img2img.py
View file @
90250d9e
...
@@ -177,7 +177,12 @@ class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline):
...
@@ -177,7 +177,12 @@ class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline):
latents
=
None
,
latents
=
None
,
generator
=
None
,
generator
=
None
,
):
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
not
isinstance
(
image
,
(
torch
.
Tensor
,
PIL
.
Image
.
Image
,
list
)):
if
not
isinstance
(
image
,
(
torch
.
Tensor
,
PIL
.
Image
.
Image
,
list
)):
raise
ValueError
(
raise
ValueError
(
...
...
examples/community/latent_consistency_interpolate.py
View file @
90250d9e
...
@@ -472,7 +472,12 @@ class LatentConsistencyModelWalkPipeline(
...
@@ -472,7 +472,12 @@ class LatentConsistencyModelWalkPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/latent_consistency_txt2img.py
View file @
90250d9e
...
@@ -163,7 +163,12 @@ class LatentConsistencyModelPipeline(DiffusionPipeline):
...
@@ -163,7 +163,12 @@ class LatentConsistencyModelPipeline(DiffusionPipeline):
return
image
,
has_nsfw_concept
return
image
,
has_nsfw_concept
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
latents
is
None
:
if
latents
is
None
:
latents
=
torch
.
randn
(
shape
,
dtype
=
dtype
).
to
(
device
)
latents
=
torch
.
randn
(
shape
,
dtype
=
dtype
).
to
(
device
)
else
:
else
:
...
...
examples/community/lpw_stable_diffusion.py
View file @
90250d9e
...
@@ -726,7 +726,12 @@ class StableDiffusionLongPromptWeightingPipeline(
...
@@ -726,7 +726,12 @@ class StableDiffusionLongPromptWeightingPipeline(
):
):
if
image
is
None
:
if
image
is
None
:
batch_size
=
batch_size
*
num_images_per_prompt
batch_size
=
batch_size
*
num_images_per_prompt
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/lpw_stable_diffusion_xl.py
View file @
90250d9e
...
@@ -1060,7 +1060,12 @@ class SDXLLongPromptWeightingPipeline(
...
@@ -1060,7 +1060,12 @@ class SDXLLongPromptWeightingPipeline(
batch_size
*=
num_images_per_prompt
batch_size
*=
num_images_per_prompt
if
image
is
None
:
if
image
is
None
:
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
@@ -1140,7 +1145,12 @@ class SDXLLongPromptWeightingPipeline(
...
@@ -1140,7 +1145,12 @@ class SDXLLongPromptWeightingPipeline(
return
latents
return
latents
else
:
else
:
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_demofusion_sdxl.py
View file @
90250d9e
...
@@ -477,7 +477,12 @@ class DemoFusionSDXLPipeline(
...
@@ -477,7 +477,12 @@ class DemoFusionSDXLPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_sdxl_style_aligned.py
View file @
90250d9e
...
@@ -919,7 +919,12 @@ class StyleAlignedSDXLPipeline(
...
@@ -919,7 +919,12 @@ class StyleAlignedSDXLPipeline(
batch_size
*=
num_images_per_prompt
batch_size
*=
num_images_per_prompt
if
image
is
None
:
if
image
is
None
:
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
@@ -999,7 +1004,12 @@ class StyleAlignedSDXLPipeline(
...
@@ -999,7 +1004,12 @@ class StyleAlignedSDXLPipeline(
return
latents
return
latents
else
:
else
:
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_stable_diffusion_pag.py
View file @
90250d9e
...
@@ -857,7 +857,12 @@ class StableDiffusionPAGPipeline(
...
@@ -857,7 +857,12 @@ class StableDiffusionPAGPipeline(
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py
View file @
90250d9e
...
@@ -751,7 +751,12 @@ class StableDiffusionXLControlNetAdapterPipeline(
...
@@ -751,7 +751,12 @@ class StableDiffusionXLControlNetAdapterPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_stable_diffusion_xl_ipex.py
View file @
90250d9e
...
@@ -614,7 +614,12 @@ class StableDiffusionXLPipelineIpex(
...
@@ -614,7 +614,12 @@ class StableDiffusionXLPipelineIpex(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/pipeline_zero1to3.py
View file @
90250d9e
...
@@ -497,7 +497,12 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
...
@@ -497,7 +497,12 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/stable_diffusion_controlnet_inpaint.py
View file @
90250d9e
...
@@ -635,7 +635,12 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, StableDiffusio
...
@@ -635,7 +635,12 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, StableDiffusio
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/stable_diffusion_ipex.py
View file @
90250d9e
...
@@ -533,7 +533,12 @@ class StableDiffusionIPEXPipeline(
...
@@ -533,7 +533,12 @@ class StableDiffusionIPEXPipeline(
)
)
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/community/stable_diffusion_reference.py
View file @
90250d9e
...
@@ -609,7 +609,12 @@ class StableDiffusionReferencePipeline(
...
@@ -609,7 +609,12 @@ class StableDiffusionReferencePipeline(
Returns:
Returns:
torch.Tensor: The prepared latent vectors.
torch.Tensor: The prepared latent vectors.
"""
"""
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/research_projects/promptdiffusion/pipeline_prompt_diffusion.py
View file @
90250d9e
...
@@ -789,7 +789,12 @@ class PromptDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
...
@@ -789,7 +789,12 @@ class PromptDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
examples/research_projects/rdm/pipeline_rdm.py
View file @
90250d9e
...
@@ -123,7 +123,12 @@ class RDMPipeline(DiffusionPipeline, StableDiffusionMixin):
...
@@ -123,7 +123,12 @@ class RDMPipeline(DiffusionPipeline, StableDiffusionMixin):
return
image_embeddings
return
image_embeddings
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
def
prepare_latents
(
self
,
batch_size
,
num_channels_latents
,
height
,
width
,
dtype
,
device
,
generator
,
latents
=
None
):
shape
=
(
batch_size
,
num_channels_latents
,
height
//
self
.
vae_scale_factor
,
width
//
self
.
vae_scale_factor
)
shape
=
(
batch_size
,
num_channels_latents
,
int
(
height
)
//
self
.
vae_scale_factor
,
int
(
width
)
//
self
.
vae_scale_factor
,
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
raise
ValueError
(
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
f
"You have passed a list of generators of length
{
len
(
generator
)
}
, but requested an effective batch"
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment