Unverified Commit 6d7279ad authored by Will Berman's avatar Will Berman Committed by GitHub
Browse files

t2i Adapter community member fix (#5090)



* convert tensorrt controlnet

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix number controlnet condition

* Add convert SD XL to onnx

* Add convert SD XL to tensorrt

* Add convert SD XL to tensorrt

* Add examples in comments

* Add examples in comments

* Add test onnx controlnet

* Add tensorrt test

* Remove copied

* Move file test to examples/community

* Remove script

* Remove script

* Remove text

* Fix import

* Fix T2I MultiAdapter

* fix tests

---------
Co-authored-by: default avatardotieuthien <thien.do@mservice.com.vn>
Co-authored-by: default avatardotieuthien <dotieuthien9997@gmail.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatardotieuthien <hades@cinnamon.is>
parent 119ad2c3
......@@ -90,6 +90,8 @@ class MultiAdapter(ModelMixin):
features = adapter(x)
if accume_state is None:
accume_state = features
for i in range(len(accume_state)):
accume_state[i] = w * accume_state[i]
else:
for i in range(len(features)):
accume_state[i] += w * features[i]
......
......@@ -727,6 +727,11 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
if isinstance(self.adapter, MultiAdapter):
adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
for k, v in enumerate(adapter_state):
adapter_state[k] = v
else:
adapter_state = self.adapter(adapter_input)
for k, v in enumerate(adapter_state):
adapter_state[k] = v * adapter_conditioning_scale
......
......@@ -216,7 +216,9 @@ class StableDiffusionMultiAdapterPipelineFastTests(AdapterTests, PipelineTesterM
return super().get_dummy_components("multi_adapter")
def get_dummy_inputs(self, device, seed=0):
return super().get_dummy_inputs(device, seed, num_images=2)
inputs = super().get_dummy_inputs(device, seed, num_images=2)
inputs["adapter_conditioning_scale"] = [0.5, 0.5]
return inputs
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment