"git@developer.sourcefind.cn:change/sglang.git" did not exist on "384d85ba358a6a097090f9d7dbe0f621c8c47829"
Unverified Commit 6c0335c7 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

DDIM docs (#1219)

parent 0248541d
...@@ -20,7 +20,8 @@ The abstract of the paper is the following: ...@@ -20,7 +20,8 @@ The abstract of the paper is the following:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space. Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
The original codebase of this paper can be found [here](https://github.com/ermongroup/ddim). The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
## Available Pipelines: ## Available Pipelines:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment