Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
466214d2
"git@developer.sourcefind.cn:change/sglang.git" did not exist on "736f04025d2b01893cbf3ece20614991d0a94951"
Commit
466214d2
authored
Jun 29, 2022
by
Patrick von Platen
Browse files
Remove bogus file
parent
4e125f72
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
19 deletions
+7
-19
src/diffusers/models/unet_grad_tts.py
src/diffusers/models/unet_grad_tts.py
+7
-19
No files found.
src/diffusers/models/unet_grad_tts.py
View file @
466214d2
...
@@ -5,8 +5,7 @@ from ..modeling_utils import ModelMixin
...
@@ -5,8 +5,7 @@ from ..modeling_utils import ModelMixin
from
.attention
import
LinearAttention
from
.attention
import
LinearAttention
from
.embeddings
import
get_timestep_embedding
from
.embeddings
import
get_timestep_embedding
from
.resnet
import
Downsample
from
.resnet
import
Downsample
from
.resnet
import
ResnetBlock
as
ResnetBlockNew
from
.resnet
import
ResnetBlock
from
.resnet
import
ResnetBlockGradTTS
as
ResnetBlock
from
.resnet
import
Upsample
from
.resnet
import
Upsample
...
@@ -82,20 +81,13 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
...
@@ -82,20 +81,13 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
self
.
ups
=
torch
.
nn
.
ModuleList
([])
self
.
ups
=
torch
.
nn
.
ModuleList
([])
num_resolutions
=
len
(
in_out
)
num_resolutions
=
len
(
in_out
)
# num_groups = 8
# self.pre_norm = False
# eps = 1e-5
# non_linearity = "mish"
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
in_out
):
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
in_out
):
is_last
=
ind
>=
(
num_resolutions
-
1
)
is_last
=
ind
>=
(
num_resolutions
-
1
)
self
.
downs
.
append
(
self
.
downs
.
append
(
torch
.
nn
.
ModuleList
(
torch
.
nn
.
ModuleList
(
[
[
# ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
ResnetBlock
(
in_channels
=
dim_in
,
out_channels
=
dim_out
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
# ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
ResnetBlock
(
in_channels
=
dim_out
,
out_channels
=
dim_out
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
ResnetBlockNew
(
in_channels
=
dim_in
,
out_channels
=
dim_out
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
ResnetBlockNew
(
in_channels
=
dim_out
,
out_channels
=
dim_out
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
Residual
(
Rezero
(
LinearAttention
(
dim_out
))),
Residual
(
Rezero
(
LinearAttention
(
dim_out
))),
Downsample
(
dim_out
,
use_conv
=
True
,
padding
=
1
)
if
not
is_last
else
torch
.
nn
.
Identity
(),
Downsample
(
dim_out
,
use_conv
=
True
,
padding
=
1
)
if
not
is_last
else
torch
.
nn
.
Identity
(),
]
]
...
@@ -103,20 +95,16 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
...
@@ -103,20 +95,16 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
)
)
mid_dim
=
dims
[
-
1
]
mid_dim
=
dims
[
-
1
]
# self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
self
.
mid_block1
=
ResnetBlock
(
in_channels
=
mid_dim
,
out_channels
=
mid_dim
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
)
# self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
self
.
mid_block1
=
ResnetBlockNew
(
in_channels
=
mid_dim
,
out_channels
=
mid_dim
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
)
self
.
mid_attn
=
Residual
(
Rezero
(
LinearAttention
(
mid_dim
)))
self
.
mid_attn
=
Residual
(
Rezero
(
LinearAttention
(
mid_dim
)))
self
.
mid_block2
=
ResnetBlock
New
(
in_channels
=
mid_dim
,
out_channels
=
mid_dim
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
)
self
.
mid_block2
=
ResnetBlock
(
in_channels
=
mid_dim
,
out_channels
=
mid_dim
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
)
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
reversed
(
in_out
[
1
:])):
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
reversed
(
in_out
[
1
:])):
self
.
ups
.
append
(
self
.
ups
.
append
(
torch
.
nn
.
ModuleList
(
torch
.
nn
.
ModuleList
(
[
[
# ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
ResnetBlock
(
in_channels
=
dim_out
*
2
,
out_channels
=
dim_in
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
# ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
ResnetBlock
(
in_channels
=
dim_in
,
out_channels
=
dim_in
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
ResnetBlockNew
(
in_channels
=
dim_out
*
2
,
out_channels
=
dim_in
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
ResnetBlockNew
(
in_channels
=
dim_in
,
out_channels
=
dim_in
,
temb_channels
=
dim
,
groups
=
8
,
pre_norm
=
False
,
eps
=
1e-5
,
non_linearity
=
"mish"
,
overwrite_for_grad_tts
=
True
),
Residual
(
Rezero
(
LinearAttention
(
dim_in
))),
Residual
(
Rezero
(
LinearAttention
(
dim_in
))),
Upsample
(
dim_in
,
use_conv_transpose
=
True
),
Upsample
(
dim_in
,
use_conv_transpose
=
True
),
]
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment