The script is also compatible with prior preservation loss and gradient checkpointing
### Training with prior-preservation loss
### Training with prior-preservation loss
Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data.
Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data.
This folder contains various research projects using 🧨 Diffusers.
They are not really maintained by the core maintainers of this library and often require a specific version of Diffusers that is indicated in the requirements file of each folder.
Updating them to the most recent version of the library will require some work.
To use any of them, just run the command
```
pip install -r requirements.txt
```
inside the folder of your choice.
If you need help with any of those, please open an issue where you directly ping the author(s), as indicated at the top of the README of each folder.