Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
35099b20
Unverified
Commit
35099b20
authored
Nov 25, 2022
by
Patrick von Platen
Committed by
GitHub
Nov 25, 2022
Browse files
[Versatile Diffusion] Fix remaining tests (#1418)
fix all tests
parent
2c6bc0f1
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
10 additions
and
6 deletions
+10
-6
src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py
...ile_diffusion/pipeline_versatile_diffusion_dual_guided.py
+4
-0
src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py
...e_diffusion/pipeline_versatile_diffusion_text_to_image.py
+2
-0
tests/pipelines/versatile_diffusion/test_versatile_diffusion_image_variation.py
...ile_diffusion/test_versatile_diffusion_image_variation.py
+1
-2
tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py
...ines/versatile_diffusion/test_versatile_diffusion_mega.py
+3
-4
No files found.
src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py
View file @
35099b20
...
...
@@ -65,6 +65,8 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
vae
:
AutoencoderKL
scheduler
:
Union
[
DDIMScheduler
,
PNDMScheduler
,
LMSDiscreteScheduler
]
_optional_components
=
[
"text_unet"
]
def
__init__
(
self
,
tokenizer
:
CLIPTokenizer
,
...
...
@@ -143,6 +145,8 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
index
=
int
(
index
)
self
.
image_unet
.
get_submodule
(
parent_name
)[
index
]
=
module
.
transformers
[
0
]
self
.
image_unet
.
register_to_config
(
dual_cross_attention
=
False
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_xformers_memory_efficient_attention with unet->image_unet
def
enable_xformers_memory_efficient_attention
(
self
):
r
"""
...
...
src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py
View file @
35099b20
...
...
@@ -57,6 +57,8 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
vae
:
AutoencoderKL
scheduler
:
Union
[
DDIMScheduler
,
PNDMScheduler
,
LMSDiscreteScheduler
]
_optional_components
=
[
"text_unet"
]
def
__init__
(
self
,
tokenizer
:
CLIPTokenizer
,
...
...
tests/pipelines/versatile_diffusion/test_versatile_diffusion_image_variation.py
View file @
35099b20
...
...
@@ -54,6 +54,5 @@ class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase
image_slice
=
image
[
0
,
253
:
256
,
253
:
256
,
-
1
]
assert
image
.
shape
==
(
1
,
512
,
512
,
3
)
print
(
torch
.
from_numpy
(
image_slice
.
flatten
()))
expected_slice
=
np
.
array
([
0.0113
,
0.2241
,
0.4024
,
0.0839
,
0.0871
,
0.2725
,
0.2581
,
0.0
,
0.1096
])
expected_slice
=
np
.
array
([
0.1205
,
0.1914
,
0.2289
,
0.0883
,
0.1595
,
0.1683
,
0.0703
,
0.1493
,
0.1298
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py
View file @
35099b20
...
...
@@ -104,7 +104,7 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
image_slice
=
image
[
0
,
253
:
256
,
253
:
256
,
-
1
]
assert
image
.
shape
==
(
1
,
512
,
512
,
3
)
expected_slice
=
np
.
array
([
0.01
4
,
0.0
11
2
,
0.0
136
,
0.0
145
,
0.0
1
07
,
0.0
113
,
0.0
272
,
0.0
215
,
0.0
216
])
expected_slice
=
np
.
array
([
0.0
08
1
,
0.0
03
2
,
0.0
002
,
0.0
056
,
0.00
2
7
,
0.0
000
,
0.0
051
,
0.0
020
,
0.0
007
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
prompt
=
"A painting of a squirrel eating a burger "
...
...
@@ -119,11 +119,10 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
expected_slice
=
np
.
array
([
0.0408
,
0.0181
,
0.0
,
0.0388
,
0.0046
,
0.0461
,
0.0411
,
0.0
,
0.0222
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
pipe
=
VersatileDiffusionPipeline
.
from_pretrained
(
"shi-labs/versatile-diffusion"
,
torch_dtype
=
torch
.
float16
)
image
=
pipe
.
image_variation
(
init_image
,
generator
=
generator
,
output_type
=
"numpy"
).
images
[
0
]
image
=
pipe
.
image_variation
(
init_image
,
generator
=
generator
,
output_type
=
"numpy"
).
images
image_slice
=
image
[
0
,
253
:
256
,
253
:
256
,
-
1
]
assert
image
.
shape
==
(
1
,
512
,
512
,
3
)
expected_slice
=
np
.
array
([
0.
0657
,
0.0529
,
0.0455
,
0.0802
,
0.0570
,
0.0179
,
0.0267
,
0.0483
,
0.0769
])
expected_slice
=
np
.
array
([
0.
3479
,
0.1943
,
0.1060
,
0.3894
,
0.2537
,
0.1394
,
0.3989
,
0.3191
,
0.1987
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment