Commit 3231712b authored by Patrick von Platen's avatar Patrick von Platen
Browse files

Post release 0.14

parent b2c1e0d6
...@@ -22,7 +22,7 @@ from diffusers.models import AutoencoderKL, UNet2DConditionModel ...@@ -22,7 +22,7 @@ from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging from diffusers.utils import logging
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
...@@ -184,10 +184,6 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline): ...@@ -184,10 +184,6 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
accelerator = Accelerator( accelerator = Accelerator(
gradient_accumulation_steps=1, gradient_accumulation_steps=1,
mixed_precision="fp16", mixed_precision="fp16",
...@@ -346,7 +342,6 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline): ...@@ -346,7 +342,6 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
guidance_scale: float = 7.5, guidance_scale: float = 7.5,
eta: float = 0.0, eta: float = 0.0,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
......
...@@ -12,7 +12,7 @@ import diffusers ...@@ -12,7 +12,7 @@ import diffusers
from diffusers import SchedulerMixin, StableDiffusionPipeline from diffusers import SchedulerMixin, StableDiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.utils import deprecate, logging from diffusers.utils import logging
try: try:
...@@ -252,7 +252,6 @@ def get_weighted_text_embeddings( ...@@ -252,7 +252,6 @@ def get_weighted_text_embeddings(
no_boseos_middle: Optional[bool] = False, no_boseos_middle: Optional[bool] = False,
skip_parsing: Optional[bool] = False, skip_parsing: Optional[bool] = False,
skip_weighting: Optional[bool] = False, skip_weighting: Optional[bool] = False,
**kwargs,
): ):
r""" r"""
Prompts can be assigned with local weights using brackets. For example, Prompts can be assigned with local weights using brackets. For example,
...@@ -682,7 +681,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -682,7 +681,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -758,10 +756,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -758,10 +756,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
# 0. Default height and width to unet # 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor
...@@ -884,7 +878,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -884,7 +878,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function for text-to-image generation. Function for text-to-image generation.
...@@ -960,7 +953,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -960,7 +953,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback=callback, callback=callback,
is_cancelled_callback=is_cancelled_callback, is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps, callback_steps=callback_steps,
**kwargs,
) )
def img2img( def img2img(
...@@ -980,7 +972,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -980,7 +972,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function for image-to-image generation. Function for image-to-image generation.
...@@ -1056,7 +1047,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -1056,7 +1047,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback=callback, callback=callback,
is_cancelled_callback=is_cancelled_callback, is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps, callback_steps=callback_steps,
**kwargs,
) )
def inpaint( def inpaint(
...@@ -1077,7 +1067,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -1077,7 +1067,6 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function for inpaint. Function for inpaint.
...@@ -1158,5 +1147,4 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): ...@@ -1158,5 +1147,4 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback=callback, callback=callback,
is_cancelled_callback=is_cancelled_callback, is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps, callback_steps=callback_steps,
**kwargs,
) )
...@@ -11,7 +11,7 @@ from transformers import CLIPFeatureExtractor, CLIPTokenizer ...@@ -11,7 +11,7 @@ from transformers import CLIPFeatureExtractor, CLIPTokenizer
import diffusers import diffusers
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import deprecate, logging from diffusers.utils import logging
try: try:
...@@ -744,10 +744,6 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline ...@@ -744,10 +744,6 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
# 0. Default height and width to unet # 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor
......
...@@ -47,7 +47,7 @@ from diffusers.utils.import_utils import is_xformers_available ...@@ -47,7 +47,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__) logger = get_logger(__name__)
......
...@@ -36,7 +36,7 @@ from diffusers.utils import check_min_version ...@@ -36,7 +36,7 @@ from diffusers.utils import check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
# Cache compiled models across invocations of this script. # Cache compiled models across invocations of this script.
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache")) cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache"))
......
...@@ -54,7 +54,7 @@ from diffusers.utils.import_utils import is_xformers_available ...@@ -54,7 +54,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__) logger = get_logger(__name__)
......
...@@ -47,7 +47,7 @@ from diffusers.utils.import_utils import is_xformers_available ...@@ -47,7 +47,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__, log_level="INFO") logger = get_logger(__name__, log_level="INFO")
......
...@@ -34,7 +34,7 @@ from diffusers.utils import check_min_version ...@@ -34,7 +34,7 @@ from diffusers.utils import check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -48,7 +48,7 @@ from diffusers.utils.import_utils import is_xformers_available ...@@ -48,7 +48,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__, log_level="INFO") logger = get_logger(__name__, log_level="INFO")
......
...@@ -74,7 +74,7 @@ else: ...@@ -74,7 +74,7 @@ else:
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__) logger = get_logger(__name__)
......
...@@ -57,7 +57,7 @@ else: ...@@ -57,7 +57,7 @@ else:
# ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -27,7 +27,7 @@ from diffusers.utils import check_min_version, is_tensorboard_available, is_wand ...@@ -27,7 +27,7 @@ from diffusers.utils import check_min_version, is_tensorboard_available, is_wand
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0") check_min_version("0.14.0.dev0")
logger = get_logger(__name__, log_level="INFO") logger = get_logger(__name__, log_level="INFO")
......
...@@ -219,7 +219,7 @@ install_requires = [ ...@@ -219,7 +219,7 @@ install_requires = [
setup( setup(
name="diffusers", name="diffusers",
version="0.13.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) version="0.14.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Diffusers", description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(), long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
......
__version__ = "0.13.0" __version__ = "0.14.0.dev0"
from .configuration_utils import ConfigMixin from .configuration_utils import ConfigMixin
from .utils import ( from .utils import (
......
...@@ -15,7 +15,7 @@ from ...schedulers import ( ...@@ -15,7 +15,7 @@ from ...schedulers import (
LMSDiscreteScheduler, LMSDiscreteScheduler,
PNDMScheduler, PNDMScheduler,
) )
from ...utils import PIL_INTERPOLATION, deprecate, randn_tensor from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
...@@ -72,7 +72,6 @@ class LDMSuperResolutionPipeline(DiffusionPipeline): ...@@ -72,7 +72,6 @@ class LDMSuperResolutionPipeline(DiffusionPipeline):
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil", output_type: Optional[str] = "pil",
return_dict: bool = True, return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]: ) -> Union[Tuple, ImagePipelineOutput]:
r""" r"""
Args: Args:
...@@ -100,10 +99,6 @@ class LDMSuperResolutionPipeline(DiffusionPipeline): ...@@ -100,10 +99,6 @@ class LDMSuperResolutionPipeline(DiffusionPipeline):
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):
batch_size = 1 batch_size = 1
elif isinstance(image, torch.Tensor): elif isinstance(image, torch.Tensor):
......
...@@ -582,7 +582,6 @@ class CycleDiffusionPipeline(DiffusionPipeline): ...@@ -582,7 +582,6 @@ class CycleDiffusionPipeline(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -646,10 +645,6 @@ class CycleDiffusionPipeline(DiffusionPipeline): ...@@ -646,10 +645,6 @@ class CycleDiffusionPipeline(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
# 1. Check inputs # 1. Check inputs
self.check_inputs(prompt, strength, callback_steps) self.check_inputs(prompt, strength, callback_steps)
......
...@@ -253,7 +253,6 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): ...@@ -253,7 +253,6 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -309,10 +308,6 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): ...@@ -309,10 +308,6 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
if isinstance(prompt, str): if isinstance(prompt, str):
batch_size = 1 batch_size = 1
elif isinstance(prompt, list): elif isinstance(prompt, list):
......
...@@ -240,7 +240,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): ...@@ -240,7 +240,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -301,10 +300,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): ...@@ -301,10 +300,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
if isinstance(prompt, str): if isinstance(prompt, str):
batch_size = 1 batch_size = 1
elif isinstance(prompt, list): elif isinstance(prompt, list):
......
...@@ -572,7 +572,6 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline): ...@@ -572,7 +572,6 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -639,10 +638,6 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline): ...@@ -639,10 +638,6 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
......
...@@ -530,7 +530,6 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline): ...@@ -530,7 +530,6 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
**kwargs,
): ):
r""" r"""
Function invoked when calling the pipeline for generation. Function invoked when calling the pipeline for generation.
...@@ -603,10 +602,6 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline): ...@@ -603,10 +602,6 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`. (nsfw) content, according to the `safety_checker`.
""" """
message = "Please use `image` instead of `init_image`."
init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
image = init_image or image
# 1. Check inputs # 1. Check inputs
self.check_inputs(prompt, strength, callback_steps) self.check_inputs(prompt, strength, callback_steps)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment