Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
2ea1da89
Unverified
Commit
2ea1da89
authored
Mar 04, 2023
by
Nicolas Patry
Committed by
GitHub
Mar 04, 2023
Browse files
Fix regression introduced in #2448 (#2551)
* Fix regression introduced in #2448 * Style.
parent
fa6d52d5
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
38 additions
and
1 deletion
+38
-1
src/diffusers/loaders.py
src/diffusers/loaders.py
+1
-1
tests/models/test_models_unet_2d_condition.py
tests/models/test_models_unet_2d_condition.py
+37
-0
No files found.
src/diffusers/loaders.py
View file @
2ea1da89
...
...
@@ -150,7 +150,7 @@ class UNet2DConditionLoadersMixin:
model_file
=
None
if
not
isinstance
(
pretrained_model_name_or_path_or_dict
,
dict
):
if
is_safetensors_available
():
if
(
is_safetensors_available
()
and
weight_name
is
None
)
or
weight_name
.
endswith
(
".safetensors"
)
:
if
weight_name
is
None
:
weight_name
=
LORA_WEIGHT_NAME_SAFE
try
:
...
...
tests/models/test_models_unet_2d_condition.py
View file @
2ea1da89
...
...
@@ -445,6 +445,43 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
# LoRA and no LoRA should NOT be the same
assert
(
sample
-
old_sample
).
abs
().
max
()
>
1e-4
def
test_lora_save_load_safetensors_load_torch
(
self
):
# enable deterministic behavior for gradient checkpointing
init_dict
,
inputs_dict
=
self
.
prepare_init_args_and_inputs_for_common
()
init_dict
[
"attention_head_dim"
]
=
(
8
,
16
)
torch
.
manual_seed
(
0
)
model
=
self
.
model_class
(
**
init_dict
)
model
.
to
(
torch_device
)
lora_attn_procs
=
{}
for
name
in
model
.
attn_processors
.
keys
():
cross_attention_dim
=
None
if
name
.
endswith
(
"attn1.processor"
)
else
model
.
config
.
cross_attention_dim
if
name
.
startswith
(
"mid_block"
):
hidden_size
=
model
.
config
.
block_out_channels
[
-
1
]
elif
name
.
startswith
(
"up_blocks"
):
block_id
=
int
(
name
[
len
(
"up_blocks."
)])
hidden_size
=
list
(
reversed
(
model
.
config
.
block_out_channels
))[
block_id
]
elif
name
.
startswith
(
"down_blocks"
):
block_id
=
int
(
name
[
len
(
"down_blocks."
)])
hidden_size
=
model
.
config
.
block_out_channels
[
block_id
]
lora_attn_procs
[
name
]
=
LoRACrossAttnProcessor
(
hidden_size
=
hidden_size
,
cross_attention_dim
=
cross_attention_dim
)
lora_attn_procs
[
name
]
=
lora_attn_procs
[
name
].
to
(
model
.
device
)
model
.
set_attn_processor
(
lora_attn_procs
)
# Saving as torch, properly reloads with directly filename
with
tempfile
.
TemporaryDirectory
()
as
tmpdirname
:
model
.
save_attn_procs
(
tmpdirname
)
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdirname
,
"pytorch_lora_weights.bin"
)))
torch
.
manual_seed
(
0
)
new_model
=
self
.
model_class
(
**
init_dict
)
new_model
.
to
(
torch_device
)
new_model
.
load_attn_procs
(
tmpdirname
,
weight_name
=
"pytorch_lora_weights.bin"
)
def
test_lora_on_off
(
self
):
# enable deterministic behavior for gradient checkpointing
init_dict
,
inputs_dict
=
self
.
prepare_init_args_and_inputs_for_common
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment