Unverified Commit 2ced899c authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline"" (#3265)

Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)"

This reverts commit 91a2a80e.
parent b63419a2
import inspect
import re
from typing import Callable, List, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL
......@@ -8,32 +8,23 @@ import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import SchedulerMixin, StableDiffusionPipeline
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromCkptMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.utils import logging
try:
from diffusers.utils import PIL_INTERPOLATION
except ImportError:
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
)
# ------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......@@ -144,7 +135,7 @@ def parse_prompt_attention(text):
return res
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int):
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
r"""
Tokenize a list of prompts and return its tokens with weights of each token.
......@@ -205,7 +196,7 @@ def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos
def get_unweighted_text_embeddings(
pipe: StableDiffusionPipeline,
pipe: DiffusionPipeline,
text_input: torch.Tensor,
chunk_length: int,
no_boseos_middle: Optional[bool] = True,
......@@ -245,7 +236,7 @@ def get_unweighted_text_embeddings(
def get_weighted_text_embeddings(
pipe: StableDiffusionPipeline,
pipe: DiffusionPipeline,
prompt: Union[str, List[str]],
uncond_prompt: Optional[Union[str, List[str]]] = None,
max_embeddings_multiples: Optional[int] = 3,
......@@ -261,7 +252,7 @@ def get_weighted_text_embeddings(
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
Args:
pipe (`StableDiffusionPipeline`):
pipe (`DiffusionPipeline`):
Pipe to provide access to the tokenizer and the text encoder.
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
......@@ -349,7 +340,7 @@ def get_weighted_text_embeddings(
pipe.tokenizer.model_max_length,
no_boseos_middle=no_boseos_middle,
)
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
if uncond_prompt is not None:
uncond_embeddings = get_unweighted_text_embeddings(
pipe,
......@@ -357,7 +348,7 @@ def get_weighted_text_embeddings(
pipe.tokenizer.model_max_length,
no_boseos_middle=no_boseos_middle,
)
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
# assign weights to the prompts and normalize in the sense of mean
# TODO: should we normalize by chunk or in a whole (current implementation)?
......@@ -377,30 +368,50 @@ def get_weighted_text_embeddings(
return text_embeddings, None
def preprocess_image(image):
def preprocess_image(image, batch_size):
w, h = image.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def preprocess_mask(mask, scale_factor=8):
mask = mask.convert("L")
w, h = mask.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
mask = 1 - mask # repaint white, keep black
mask = torch.from_numpy(mask)
return mask
def preprocess_mask(mask, batch_size, scale_factor=8):
if not isinstance(mask, torch.FloatTensor):
mask = mask.convert("L")
w, h = mask.size
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = np.vstack([mask[None]] * batch_size)
mask = 1 - mask # repaint white, keep black
mask = torch.from_numpy(mask)
return mask
else:
valid_mask_channel_sizes = [1, 3]
# if mask channel is fourth tensor dimension, permute dimensions to pytorch standard (B, C, H, W)
if mask.shape[3] in valid_mask_channel_sizes:
mask = mask.permute(0, 3, 1, 2)
elif mask.shape[1] not in valid_mask_channel_sizes:
raise ValueError(
f"Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension,"
f" but received mask of shape {tuple(mask.shape)}"
)
# (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape
mask = mask.mean(dim=1, keepdim=True)
h, w = mask.shape[-2:]
h, w = (x - x % 8 for x in (h, w)) # resize to integer multiple of 8
mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor))
return mask
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
class StableDiffusionLongPromptWeightingPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromCkptMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
weighting in prompt.
......@@ -429,66 +440,196 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=requires_safety_checker,
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.__init__additional__()
else:
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
self.__init__additional__()
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(
requires_safety_checker=requires_safety_checker,
)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding.
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
from accelerate import cpu_offload
else:
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
def __init__additional__(self):
if not hasattr(self, "vae_scale_factor"):
setattr(self, "vae_scale_factor", 2 ** (len(self.vae.config.block_out_channels) - 1))
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
......@@ -505,8 +646,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
max_embeddings_multiples,
negative_prompt=None,
max_embeddings_multiples=3,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
......@@ -526,47 +669,71 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
if negative_prompt is None:
negative_prompt = [""] * batch_size
elif isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * batch_size
if batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * batch_size
elif isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * batch_size
if batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
if prompt_embeds is None or negative_prompt_embeds is None:
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer)
prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
max_embeddings_multiples=max_embeddings_multiples,
)
if prompt_embeds is None:
prompt_embeds = prompt_embeds1
if negative_prompt_embeds is None:
negative_prompt_embeds = negative_prompt_embeds1
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
max_embeddings_multiples=max_embeddings_multiples,
)
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
bs_embed, seq_len, _ = uncond_embeddings.shape
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
bs_embed, seq_len, _ = negative_prompt_embeds.shape
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return text_embeddings
return prompt_embeds
def check_inputs(self, prompt, height, width, strength, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
def check_inputs(
self,
prompt,
height,
width,
strength,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
......@@ -575,17 +742,42 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
if is_text2img:
return self.scheduler.timesteps.to(device), num_inference_steps
else:
# get the original timestep using init_timestep
offset = self.scheduler.config.get("steps_offset", 0)
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
t_start = max(num_inference_steps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start:].to(device)
return timesteps, num_inference_steps - t_start
def run_safety_checker(self, image, device, dtype):
......@@ -599,7 +791,7 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
......@@ -623,43 +815,51 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None):
def prepare_latents(
self,
image,
timestep,
num_images_per_prompt,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if image is None:
shape = (
batch_size,
self.unet.config.in_channels,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
batch_size = batch_size * num_images_per_prompt
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
else:
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents, None, None
else:
image = image.to(device=self.device, dtype=dtype)
init_latent_dist = self.vae.encode(image).latent_dist
init_latents = init_latent_dist.sample(generator=generator)
init_latents = 0.18215 * init_latents
init_latents = torch.cat([init_latents] * batch_size, dim=0)
init_latents = self.vae.config.scaling_factor * init_latents
# Expand init_latents for batch_size and num_images_per_prompt
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
init_latents_orig = init_latents
shape = init_latents.shape
# add noise to latents using the timesteps
if device.type == "mps":
noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
else:
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.add_noise(init_latents, noise, timestep)
noise = randn_tensor(init_latents.shape, generator=generator, device=self.device, dtype=dtype)
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents, init_latents_orig, noise
@torch.no_grad()
......@@ -675,15 +875,19 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
guidance_scale: float = 7.5,
strength: float = 0.8,
num_images_per_prompt: Optional[int] = 1,
add_predicted_noise: Optional[bool] = False,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_embeddings_multiples: Optional[int] = 3,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
......@@ -723,16 +927,26 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
add_predicted_noise (`bool`, *optional*, defaults to True):
Use predicted noise instead of random noise when constructing noisy versions of the original image in
the reverse diffusion process
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
......@@ -750,6 +964,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,
......@@ -764,10 +982,18 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, strength, callback_steps)
self.check_inputs(
prompt, height, width, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
......@@ -775,26 +1001,28 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
max_embeddings_multiples,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
dtype = text_embeddings.dtype
dtype = prompt_embeds.dtype
# 4. Preprocess image and mask
if isinstance(image, PIL.Image.Image):
image = preprocess_image(image)
image = preprocess_image(image, batch_size)
if image is not None:
image = image.to(device=self.device, dtype=dtype)
if isinstance(mask_image, PIL.Image.Image):
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor)
if mask_image is not None:
mask = mask_image.to(device=self.device, dtype=dtype)
mask = torch.cat([mask] * batch_size * num_images_per_prompt)
mask = torch.cat([mask] * num_images_per_prompt)
else:
mask = None
......@@ -807,7 +1035,9 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
latents, init_latents_orig, noise = self.prepare_latents(
image,
latent_timestep,
batch_size * num_images_per_prompt,
num_images_per_prompt,
batch_size,
self.unet.config.in_channels,
height,
width,
dtype,
......@@ -820,43 +1050,70 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if mask is not None:
# masking
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
latents = (init_latents_proper * mask) + (latents * (1 - mask))
# call the callback, if provided
if i % callback_steps == 0:
if callback is not None:
callback(i, t, latents)
if is_cancelled_callback is not None and is_cancelled_callback():
return None
# 9. Post-processing
image = self.decode_latents(latents)
# 10. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
# 11. Convert to PIL
if output_type == "pil":
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if mask is not None:
# masking
if add_predicted_noise:
init_latents_proper = self.scheduler.add_noise(
init_latents_orig, noise_pred_uncond, torch.tensor([t])
)
else:
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
latents = (init_latents_proper * mask) + (latents * (1 - mask))
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if i % callback_steps == 0:
if callback is not None:
callback(i, t, latents)
if is_cancelled_callback is not None and is_cancelled_callback():
return None
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 9. Post-processing
image = self.decode_latents(latents)
# 10. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 11. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 9. Post-processing
image = self.decode_latents(latents)
# 10. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return image, has_nsfw_concept
......@@ -873,14 +1130,17 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
guidance_scale: float = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_embeddings_multiples: Optional[int] = 3,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function for text-to-image generation.
......@@ -908,13 +1168,20 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
......@@ -932,7 +1199,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
......@@ -950,12 +1223,15 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
eta=eta,
generator=generator,
latents=latents,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_embeddings_multiples=max_embeddings_multiples,
output_type=output_type,
return_dict=return_dict,
callback=callback,
is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps,
cross_attention_kwargs=cross_attention_kwargs,
)
def img2img(
......@@ -968,13 +1244,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_embeddings_multiples: Optional[int] = 3,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function for image-to-image generation.
......@@ -1007,9 +1286,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
......@@ -1027,8 +1313,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
`None` if cancelled by `is_cancelled_callback`,
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
......@@ -1044,12 +1335,15 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_embeddings_multiples=max_embeddings_multiples,
output_type=output_type,
return_dict=return_dict,
callback=callback,
is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps,
cross_attention_kwargs=cross_attention_kwargs,
)
def inpaint(
......@@ -1062,14 +1356,18 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
add_predicted_noise: Optional[bool] = False,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_embeddings_multiples: Optional[int] = 3,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function for inpaint.
......@@ -1103,12 +1401,22 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
add_predicted_noise (`bool`, *optional*, defaults to True):
Use predicted noise instead of random noise when constructing noisy versions of the original image in
the reverse diffusion process
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
......@@ -1126,8 +1434,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
`None` if cancelled by `is_cancelled_callback`,
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
......@@ -1142,12 +1455,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
guidance_scale=guidance_scale,
strength=strength,
num_images_per_prompt=num_images_per_prompt,
add_predicted_noise=add_predicted_noise,
eta=eta,
generator=generator,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_embeddings_multiples=max_embeddings_multiples,
output_type=output_type,
return_dict=return_dict,
callback=callback,
is_cancelled_callback=is_cancelled_callback,
callback_steps=callback_steps,
cross_attention_kwargs=cross_attention_kwargs,
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment