@@ -19,163 +19,10 @@ The original codebase can be found at [openai/shap-e](https://github.com/openai/
...
@@ -19,163 +19,10 @@ The original codebase can be found at [openai/shap-e](https://github.com/openai/
<Tip>
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
See the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
</Tip>
## Usage Examples
In the following, we will walk you through some examples of how to use Shap-E pipelines to create 3D objects in gif format.
### Text-to-3D image generation
We can use [`ShapEPipeline`] to create 3D object based on a text prompt. In this example, we will make a birthday cupcake for :firecracker: diffusers library's 1 year birthday. The workflow to use the Shap-E text-to-image pipeline is same as how you would use other text-to-image pipelines in diffusers.
The output of [`ShapEPipeline`] is a list of lists of images frames. Each list of frames can be used to create a 3D object. Let's use the `export_to_gif` utility function in diffusers to make a 3D cupcake!
For both [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`], you can generate mesh output by passing `output_type` as `mesh` to the pipeline, and then use the [`ShapEPipeline.export_to_ply`] utility function to save the output as a `ply` file. We also provide a [`ShapEPipeline.export_to_obj`] function that you can use to save mesh outputs as `obj` files.
Huggingface Datasets supports mesh visualization for mesh files in `glb` format. Below we will show you how to convert your mesh file into `glb` format so that you can use the Dataset viewer to render 3D objects.
We need to install `trimesh` library.
```
pip install trimesh
```
To convert the mesh file into `glb` format,
```python
importtrimesh
mesh=trimesh.load("3d_cake.ply")
mesh.export("3d_cake.glb",file_type="glb")
```
By default, the mesh output of Shap-E is from the bottom viewpoint; you can change the default viewpoint by applying a rotation transformation
Shap-E is a conditional model for generating 3D assets which could be used for video game development, interior design, and architecture. It is trained on a large dataset of 3D assets, and post-processed to render more views of each object and produce 16K instead of 4K point clouds. The Shap-E model is trained in two steps:
1. a encoder accepts the point clouds and rendered views of a 3D asset and outputs the parameters of implicit functions that represent the asset
2. a diffusion model is trained on the latents produced by the encoder to generate either neural radiance fields (NeRFs) or a textured 3D mesh, making it easier to render and use the 3D asset in downstream applications
This guide will show you how to use Shap-E to start generating your own 3D assets!
Before you begin, make sure you have the following libraries installed:
```py
# uncomment to install the necessary libraries in Colab
To generate a gif of a 3D object, pass a text prompt to the [`ShapEPipeline`]. The pipeline generates a list of image frames which are used to create the 3D object.
To generate a 3D object from another image, use the [`ShapEImg2ImgPipeline`]. You can use an existing image or generate an entirely new one. Let's use the the [Kandinsky 2.1](../api/pipelines/kandinsky) model to generate a new image.
Shap-E is a flexible model that can also generate textured mesh outputs to be rendered for downstream applications. In this example, you'll convert the output into a `glb` file because the 🤗 Datasets library supports mesh visualization of `glb` files which can be rendered by the [Dataset viewer](https://huggingface.co/docs/hub/datasets-viewer#dataset-preview).
You can generate mesh outputs for both the [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`] by specifying the `output_type` parameter as `"mesh"`:
Use the [`~utils.export_to_ply`] function to save the mesh output as a `ply` file:
<Tip>
You can optionally save the mesh output as an `obj` file with the [`~utils.export_to_obj`] function. The ability to save the mesh output in a variety of formats makes it more flexible for downstream usage!
</Tip>
```py
fromdiffusers.utilsimportexport_to_ply
ply_path=export_to_ply(images[0],"3d_cake.ply")
print(f"saved to folder: {ply_path}")
```
Then you can convert the `ply` file to a `glb` file with the trimesh library:
```py
importtrimesh
mesh=trimesh.load("3d_cake.ply")
mesh.export("3d_cake.glb",file_type="glb")
```
By default, the mesh output is focused from the bottom viewpoint but you can change the default viewpoint by applying a rotation transform: