Unverified Commit 28ba0ffa authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

make from hub import work

make from hub import work
parents 96164196 73354621
...@@ -90,6 +90,7 @@ class ConfigMixin: ...@@ -90,6 +90,7 @@ class ConfigMixin:
self.to_json_file(output_config_file) self.to_json_file(output_config_file)
logger.info(f"ConfigMixinuration saved in {output_config_file}") logger.info(f"ConfigMixinuration saved in {output_config_file}")
@classmethod @classmethod
def get_config_dict( def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
...@@ -183,34 +184,41 @@ class ConfigMixin: ...@@ -183,34 +184,41 @@ class ConfigMixin:
else: else:
logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}") logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")
return config_dict
@classmethod
def extract_init_dict(cls, config_dict, **kwargs):
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys()) expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
expected_keys.remove("self") expected_keys.remove("self")
init_dict = {}
for key in expected_keys: for key in expected_keys:
if key in kwargs: if key in kwargs:
# overwrite key # overwrite key
config_dict[key] = kwargs.pop(key) init_dict[key] = kwargs.pop(key)
elif key in config_dict:
# use value from config dict
init_dict[key] = config_dict.pop(key)
passed_keys = set(config_dict.keys())
unused_kwargs = kwargs unused_kwargs = config_dict.update(kwargs)
for key in passed_keys - expected_keys:
unused_kwargs[key] = config_dict.pop(key)
passed_keys = set(init_dict.keys())
if len(expected_keys - passed_keys) > 0: if len(expected_keys - passed_keys) > 0:
logger.warn( logger.warn(
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values." f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
) )
return config_dict, unused_kwargs return init_dict, unused_kwargs
@classmethod @classmethod
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs): def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
config_dict, unused_kwargs = cls.get_config_dict( config_dict = cls.get_config_dict(
pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs
) )
model = cls(**config_dict) init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)
model = cls(**init_dict)
if return_unused_kwargs: if return_unused_kwargs:
return model, unused_kwargs return model, unused_kwargs
......
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to dynamically load objects from the Hub."""
import importlib
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from huggingface_hub import HfFolder, model_info
from transformers.utils import (
HF_MODULES_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
cached_path,
hf_bucket_url,
is_offline_mode,
logging,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def init_hf_modules():
"""
Creates the cache directory for modules with an init, and adds it to the Python path.
"""
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(HF_MODULES_CACHE)
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
if not init_path.exists():
init_path.touch()
def create_dynamic_module(name: Union[str, os.PathLike]):
"""
Creates a dynamic module in the cache directory for modules.
"""
init_hf_modules()
dynamic_module_path = Path(HF_MODULES_CACHE) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent)
os.makedirs(dynamic_module_path, exist_ok=True)
init_path = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def get_relative_imports(module_file):
"""
Get the list of modules that are relatively imported in a module file.
Args:
module_file (`str` or `os.PathLike`): The module file to inspect.
"""
with open(module_file, "r", encoding="utf-8") as f:
content = f.read()
# Imports of the form `import .xxx`
relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
# Unique-ify
return list(set(relative_imports))
def get_relative_import_files(module_file):
"""
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
imports (if a imports b and b imports c, it will return module files for b and c).
Args:
module_file (`str` or `os.PathLike`): The module file to inspect.
"""
no_change = False
files_to_check = [module_file]
all_relative_imports = []
# Let's recurse through all relative imports
while not no_change:
new_imports = []
for f in files_to_check:
new_imports.extend(get_relative_imports(f))
module_path = Path(module_file).parent
new_import_files = [str(module_path / m) for m in new_imports]
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
files_to_check = [f"{f}.py" for f in new_import_files]
no_change = len(new_import_files) == 0
all_relative_imports.extend(files_to_check)
return all_relative_imports
def check_imports(filename):
"""
Check if the current Python environment contains all the libraries that are imported in a file.
"""
with open(filename, "r", encoding="utf-8") as f:
content = f.read()
# Imports of the form `import xxx`
imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
# Only keep the top-level module
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
# Unique-ify and test we got them all
imports = list(set(imports))
missing_packages = []
for imp in imports:
try:
importlib.import_module(imp)
except ImportError:
missing_packages.append(imp)
if len(missing_packages) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
)
return get_relative_imports(filename)
def get_class_in_module(class_name, module_path):
"""
Import a module on the cache directory for modules and extract a class from it.
"""
module_path = module_path.replace(os.path.sep, ".")
module = importlib.import_module(module_path)
return getattr(module, class_name)
def get_cached_module_file(
pretrained_model_name_or_path: Union[str, os.PathLike],
module_file: str,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
use_auth_token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
):
"""
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
Transformers module.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
module_file (`str`):
The name of the module file containing the class to look for.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `transformers-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
<Tip>
Passing `use_auth_token=True` is required when you want to use a private model.
</Tip>
Returns:
`str`: The path to the module inside the cache.
"""
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)
submodule = "local"
try:
# Load from URL or cache if already cached
resolved_module_file = cached_path(
module_file_or_url,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except EnvironmentError:
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
raise
# Check we have all the requirements in our environment
modules_needed = check_imports(resolved_module_file)
# Now we move the module inside our cached dynamic modules.
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(full_submodule)
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(resolved_module_file, submodule_path / module_file)
for module_needed in modules_needed:
module_needed = f"{module_needed}.py"
shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
return os.path.join(full_submodule, module_file)
def get_class_from_dynamic_module(
pretrained_model_name_or_path: Union[str, os.PathLike],
module_file: str,
class_name: str,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
use_auth_token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Extracts a class from a module file, present in the local folder or repository of a model.
<Tip warning={true}>
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
therefore only be called on trusted repos.
</Tip>
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
module_file (`str`):
The name of the module file containing the class to look for.
class_name (`str`):
The name of the class to import in the module.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `transformers-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
<Tip>
Passing `use_auth_token=True` is required when you want to use a private model.
</Tip>
Returns:
`type`: The class, dynamically imported from the module.
Examples:
```python
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
# module.
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
```"""
# And lastly we get the class inside our newly created module
final_module = get_cached_module_file(
pretrained_model_name_or_path,
module_file,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
use_auth_token=use_auth_token,
revision=revision,
local_files_only=local_files_only,
)
return get_class_in_module(class_name, final_module.replace(".py", ""))
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
import importlib import importlib
import os import os
from pathlib import Path
from typing import Optional, Union from typing import Optional, Union
from huggingface_hub import snapshot_download from huggingface_hub import snapshot_download
...@@ -23,6 +24,7 @@ from huggingface_hub import snapshot_download ...@@ -23,6 +24,7 @@ from huggingface_hub import snapshot_download
from transformers.utils import logging from transformers.utils import logging
from .configuration_utils import ConfigMixin from .configuration_utils import ConfigMixin
from .dynamic_modules_utils import get_class_from_dynamic_module
INDEX_FILE = "diffusion_model.pt" INDEX_FILE = "diffusion_model.pt"
...@@ -54,7 +56,7 @@ class DiffusionPipeline(ConfigMixin): ...@@ -54,7 +56,7 @@ class DiffusionPipeline(ConfigMixin):
class_name = module.__class__.__name__ class_name = module.__class__.__name__
register_dict = {name: (library, class_name)} register_dict = {name: (library, class_name)}
register_dict["_module"] = self.__module__
# save model index config # save model index config
self.register(**register_dict) self.register(**register_dict)
...@@ -62,11 +64,15 @@ class DiffusionPipeline(ConfigMixin): ...@@ -62,11 +64,15 @@ class DiffusionPipeline(ConfigMixin):
# set models # set models
setattr(self, name, module) setattr(self, name, module)
register_dict = {"_module" : self.__module__.split(".")[-1] + ".py"}
self.register(**register_dict)
def save_pretrained(self, save_directory: Union[str, os.PathLike]): def save_pretrained(self, save_directory: Union[str, os.PathLike]):
self.save_config(save_directory) self.save_config(save_directory)
model_index_dict = self._dict_to_save model_index_dict = self._dict_to_save
model_index_dict.pop("_class_name") model_index_dict.pop("_class_name")
model_index_dict.pop("_module")
for name, (library_name, class_name) in self._dict_to_save.items(): for name, (library_name, class_name) in self._dict_to_save.items():
importable_classes = LOADABLE_CLASSES[library_name] importable_classes = LOADABLE_CLASSES[library_name]
...@@ -95,16 +101,22 @@ class DiffusionPipeline(ConfigMixin): ...@@ -95,16 +101,22 @@ class DiffusionPipeline(ConfigMixin):
else: else:
cached_folder = pretrained_model_name_or_path cached_folder = pretrained_model_name_or_path
config_dict, pipeline_kwargs = cls.get_config_dict(cached_folder) config_dict = cls.get_config_dict(cached_folder)
module = config_dict["_module"]
class_name_ = config_dict["_class_name"]
if class_name_ == cls.__name__:
pipeline_class = cls
else:
pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
module = pipeline_kwargs.pop("_module", None) init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
# TODO(Suraj) - make from hub import work
# Make `ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom-pipe")` work
# Add Sylvains code from transformers
init_kwargs = {} init_kwargs = {}
for name, (library_name, class_name) in config_dict.items(): for name, (library_name, class_name) in init_dict.items():
importable_classes = LOADABLE_CLASSES[library_name] importable_classes = LOADABLE_CLASSES[library_name]
if library_name == module: if library_name == module:
...@@ -129,5 +141,5 @@ class DiffusionPipeline(ConfigMixin): ...@@ -129,5 +141,5 @@ class DiffusionPipeline(ConfigMixin):
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...) init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
model = cls(**init_kwargs) model = pipeline_class(**init_kwargs)
return model return model
...@@ -22,6 +22,8 @@ from distutils.util import strtobool ...@@ -22,6 +22,8 @@ from distutils.util import strtobool
import torch import torch
from diffusers import GaussianDDPMScheduler, UNetModel from diffusers import GaussianDDPMScheduler, UNetModel
from diffusers.pipeline_utils import DiffusionPipeline
from models.vision.ddpm.modeling_ddpm import DDPM
global_rng = random.Random() global_rng = random.Random()
...@@ -199,3 +201,46 @@ class SamplerTesterMixin(unittest.TestCase): ...@@ -199,3 +201,46 @@ class SamplerTesterMixin(unittest.TestCase):
assert image.shape == (1, 3, 256, 256) assert image.shape == (1, 3, 256, 256)
image_slice = image[0, -1, -3:, -3:].cpu() image_slice = image[0, -1, -3:, -3:].cpu()
assert (image_slice - torch.tensor([[0.1746, 0.5125, -0.7920], [-0.5734, -0.2910, -0.1984], [0.4090, -0.7740, -0.3941]])).abs().sum() < 1e-3 assert (image_slice - torch.tensor([[0.1746, 0.5125, -0.7920], [-0.5734, -0.2910, -0.1984], [0.4090, -0.7740, -0.3941]])).abs().sum() < 1e-3
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
schedular = GaussianDDPMScheduler(timesteps=10)
ddpm = DDPM(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPM.from_pretrained(tmpdirname)
generator = torch.Generator()
generator = generator.manual_seed(669472945848556)
image = ddpm(generator=generator)
generator = generator.manual_seed(669472945848556)
new_image = new_ddpm(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_from_pretrained_hub(self):
model_path = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.noise_scheduler.num_timesteps = 10
ddpm_from_hub.noise_scheduler.num_timesteps = 10
generator = torch.Generator(device=torch_device)
generator = generator.manual_seed(669472945848556)
image = ddpm(generator=generator)
generator = generator.manual_seed(669472945848556)
new_image = ddpm_from_hub(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment